한국해군함정의 대함유도탑 협동전을 위한 통신 프레임

김종훈*
고려대학교 컴퓨터정보통신대학원*
e-mail:rotblume@koare.ac.kr

A Communication Frame for Cooperative Engagement of Korean Navy Ships against Anti-ship Missiles

Jong-Hun Kim*
Graduate School of Computer Information & Communication, Korea University*

요약

현대전에서 C4ISR 및 PGM 능력 보유가 점점 중요해지고 있는 만큼 무기체계 위협에 대응하기 위한 이론적 연구의 필요성이 점점 커지고 있다. 이에 따라 해군에서는 C4ISR과 PGM (Precision Guided Munitions/Missile) 능력 보유를 위해 지속적으로 노력중이다. C4ISR 및 PGM능력 향상은 상대적으로 무기계체 위협에 대한 더욱 빠른 대응 시간을 요구하기 때문이다. 한국해군함정의 경우 한반도 전장 환경 고려 시 위협 대처에 가장 큰대는 대응 시간을 요구하는 위협이 바로 해우에 로 나와 비상사태를 일으킬 수 있기 때문이다.

1. 서론

현대전에서는 C4ISR (Command, Control, Communication, Computer, Surveillance and Reconnaissance)의 중요성이 제2차 세계대전 이후 급속도로 증가하고 있으며, 전 세계 다수의 국가들이 현대전에서의 승리를 보장하기 위해 C4ISR 및 PGM (Precision Guided Munitions/Missile) 능력 보유를 위해 지속적으로 노력중이다. C4ISR 및 PGM능력 향상은 상대적으로 무기계체 위협에 대한 더욱 빠른 대응 시간을 요구하기 때문이다. 한국해군함정의 경우 한반도 전장 환경 고려 시 위협 대처에 가장 큰대는 대응 시간을 요구하는 위협이 바로 해우에 로 나와 비상사태를 일으킬 수 있기 때문이다.

2. 본론

2.1 연구배경

이 해군에서 제1,2차 세계대전을 통해 대공전투에 대응할 필요성을 제기하였고 이를 위해 전투체계 개발, 특히 Aegis 전투체계 개발을 통한 자동화된 탐지표적과 이를 대응할 무장함정의 연계효율성을 증진하였다. 또한 해군 전술자료체계 (NTDS : Navy Tactical Data System) 개발 및 운영을 통해 유강의 간 전술표적정보 교환능력을 향상시켰다. 하지만 Aegis 전투체계의 NTDS만으로는 자활 방어가 아닌 여러 함정으로 구성되는 전투단의 효율적인 대응표적 대응에 제한이 있었다. 특히 NTDS에서 사용하고 있는 각종 TADIL (Tactical Data Interchange Link) 통신 규격 특성상 다양한테마지를 포함하여 전술정보를 교환하기 때문에 단시간에 대응표적 정보를 공유하는 데 한계가 있었다.

<표 1> TADIL의 한 종류인 Link-16의 특성

<table>
<thead>
<tr>
<th>특성</th>
<th>내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>전송속도</td>
<td>28.8 115.2kbps</td>
</tr>
<tr>
<td>운용주파수</td>
<td>UHF대역, Spread Spectrum 방식</td>
</tr>
<tr>
<td>가변제조간</td>
<td>TDMA / 할당된 타임 슬롯</td>
</tr>
<tr>
<td>메시지 종류</td>
<td>J시리즈(J00 ~ J37)로 다수 표적정보 외에 무장 정보, 타 플랫폼의 정보 등을 포함</td>
</tr>
</tbody>
</table>

(그림 1) J0.0 메시지 중 J0.01의 Word Map

(그림 2) 미 항공의 Aegis클래스 함정과 LHA 클래스 함정의 활동교전정보 교환

한국해군에서도 CEC체계의 여러 가능성 중 대형유도탄에 대한 대응할 수 있도록 최소한의 체계 구축이 필요하며, 이를 구현하기 위해 여러 개발요소가 필요하다. 이를 개발하기 위해서 최우선적으로는 이 해군수상전투단의 기함식을 함 세무사상품의 구축함을 통해 계획상의 함정과 현재 개발하여 협동중대 활동대응의 체계를 구축하려는 LOS (Line Of Sight)에서 최초 접촉 후 이 해군수상전투단까지 대응 가능한시간 산출을 통해 체계의 최소요구사항 정의가 필요하다.

2.2 대형유도탄 활동대응에 대한 최소요구시간 산출

대형유도탄의 활동대응에 필요한 최소 요구 시간은 항공전투단체의 DDS (Data Distribution Service)의 처리시간과 인근항공그룹 항공작업이 수행하던 그룹의 활동대응 작업량, 그리고 대형유도탄의 작권, Chaff를 이용한 대형유도탄 전투단의 회피기동 등 전투단내의 대형유도탄 대응을 위한 시간의 합이 대형유도탄 최초접촉 부터 전투단 도달시간까지의 시간보다 짧아야 한다. 대형유도탄의 최초접촉시간은 대형유도탄의 속도, 비행고도, 비행지역에 따라 다르지만 Janes의 악장 등에서 일반적으로 알려진 제한 기준을 따르므로 일반도 항공지역을 고려하여 아래와 같이 가정한다.

위 기준으로 산출한 대형유도탄의 최초접촉기능시간은 아래와 같이 계산된다.

- 물리적 방식
 - 대형유도탄
 - 속도: 바와 0.9 = 1,102.635km/h
 - Sea-skimming 고도: 40ft = 12.192m
 - 안전영역
 - 세무대상물질 탐지거리 높이: 55ft = 16.764m

- 우리나라 지역 특성 고려 전과의 가시거리 산출을 위해 등기 지구방위 계수(K)를 4/3 적용 시 최초 탐지기한

 <표 2> 등기 지구방위 계수(K)

<table>
<thead>
<tr>
<th>계수</th>
<th>지구방위 계수(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4</td>
<td>2/3</td>
</tr>
<tr>
<td>3/4</td>
<td>4/3</td>
</tr>
<tr>
<td>3/4</td>
<td>6/5</td>
</tr>
<tr>
<td>K>1</td>
<td>K=1</td>
</tr>
</tbody>
</table>

- 대형유도탄 도달시간:
 - 31.1799334km × 1,102.635km/h
 - 0.02827755616시간 = 1.639693966분 ≈ 1분41초

(그림 4) 항공의 지고도 대형유도탄 원거리 탐지 제한

- (그림 3) 전과 가시거리
추, 1부 413쪽 이내에 대형유도단 표적정보 획득, 한국해군 수상전투단 전파, 임무 할당 및 대형유도단 요격, Chaff를 이용한 대형유도단 교란, 채비기등의 대형유도단에 대한 대응이 이루어져야 한다. 임무 할당의 경우 한국해군 함정에 탐색된 전투체제 내에서의 표적정보수신, 임무할당 및 무장과의 연동시간은 차단모드 설정 시간 수초 사이이며, 대형 유도단 방어유도단의 비행시간은 중류 90%전후에서의 경우 13초 전후, 대형유도단 교란을 위한 Chaff함(객) 확산 및 채비기등에 소요되는 시간은 30~60초 소요되므로, 위 사항을 고려하여 한국해군 수상전투단 내 함정 간 대형 유도단 전전경로 교란을 위한 송보 요구 시간은 8초 이내로 설정한다.

2.3 대형유도단 tempting대응을 위한 동신 프레임 제시

대형유도단에 대한 표적정보를 최초 획득한 함정이 전투단내 다른 함정에서 대형유도단 정보를 전파하고, 대형 유도단에 대응하기 위해서는 매시지 송수신의 정이 확보함으로써 디지털한 프레임이 요구되며, 이를 만족하는 아래와 같은 동신 프레임을 제시하고자 한다.

<표 3> Frame Map

<table>
<thead>
<tr>
<th>Track's Height</th>
<th>Time</th>
<th>Own's NU</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>48~63(16bit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32~47(16bit)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track's X Coordinate</th>
<th>Track's Y Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0~25(3bit)</td>
<td>78~91(3bit)</td>
</tr>
<tr>
<td>25~77(3bit)</td>
<td>74~4(3bit)</td>
</tr>
<tr>
<td>68~70(4bit)</td>
<td>64~67(4bit)</td>
</tr>
</tbody>
</table>

 질시된 메시지는 수상전투단 구성 15쪽 이내, 전투단내 개별미션은 최대 4차까지 부여할 수 있도록 구성하고, 대형 유도단의 참조 및 속력정보 메시지를 생략하여 메시지 총 길이를 96bit 이내로 프레임을 구성하였다. TADIL 메시지 내 대형유도단 정보는 대형유도단의 참조 및 속력정보를 포함하고 있지만 위에서 제안한 동신 프레임의 경우 단기간에 대형유도단 정보를 신속하게 수신하게 목적을 두어 프레임 길이를 최소화하기 때문에 대형유도단의 참조 및 속력정보를 생략하였다. 또한 대형유도단의 참조 및 속력은 각 함정의 전투체제에서 최신화되어 지속 수신되는 대형 유도단의 표적정보 (32~63개 bit)를 수신시 계산할 수 있다.

위 제시한 동신 프레임 내에 구성하고 있는 메시지의 내용은 아래 표와 같다.

<table>
<thead>
<tr>
<th>종류</th>
<th>설명</th>
<th>세부사항</th>
</tr>
</thead>
</table>
| Label | 접촉된 대형유도단에 부여된 번호 | *0000 : 대장표적이나 대형 유도단 이념
*0001 ~ 1111 : 대형유도단 부여 번호 |
| NU (Net Unit) | 함정고유번호 | *0000 : Unknown
*0001 ~ 1111 : 대형유도단 부여 번호 |
| Time | 대형유도단 (표적) 접촉시간 | *00:00:00 ~ 23:59:59
*0101000101000000 : 이상 |
| Track’s Height | 표적 고도 | *0m : Unknown
*1 ~ 127m
*1000000011111111 |
| Track’s X Coordinate | 표적 위도 | *b1t : 0
*0101000101000000 : 이상 |
| Track’s Y Coordinate | 표적 경도 | *b1t : 0
*0101000101000000 : 이상 |

3. 설계

3.1 실제환경 구성

위에서 제시한 동신프레임을 처리할 수 있는 DTS (Data Terminal Set)를 제작하여, 실제 함정 전투체제 간 통신설계를 수행하는데 제한사항이 있는 관계로 허사체계에서 위 제시한 동신프레임과 동일한 bit수인 96bit를 가지는 NRT (Non-Real Time) 데이터 패킷을 생성한 후 DTS 내 RCI (Remote Control Interface)를 통해 위에서 제시한 프레임의 효용성 및 운용 가능성을 판단하였다.

![그림 5] 설계장비 구성도
<표 5> 실험 설정내용

<table>
<thead>
<tr>
<th>요소</th>
<th>내용</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>통신기 주파수</td>
<td>UHF 대역</td>
<td></td>
</tr>
<tr>
<td>가입개조소 송신방식</td>
<td>Rollocall / 가입개조소 순차 송신</td>
<td>NCS(Net Control Station)에서 정밀도 Packet순서대로 NCS ↔ Picket 1:1 송수신</td>
</tr>
<tr>
<td>DTS 설정속도</td>
<td>2.250bps</td>
<td>가입개조소 송신시간 : 약 1초</td>
</tr>
</tbody>
</table>

NCS측 RCI에서 Rollocall 가입개조 설계 후 서비스에서 공중 표적 정보인 M.2와 M.82의 메시지를 1~15개까지 NRT로 생성하여 전송 시 Picket측 서비스에서 표적정보가 수신되었는지를 확인하고 수신시간을 확인하여 표적정보의 수신률 및 송수신 요구시간 내 동신이 이루어졌는지 확인하였다.

(그림 6) DTS_RCI 구성화면

3.2 실험 결과
NCS에서 송신한 NRT를 1~15개까지 각 1회 송신하였을 때 Picket측에서 2초 이내, 즉 1회 Rollocall에 모두 송신한 경우가 전체 평균 90%였고, 본 실험 결과 NCS에서 송신한 NRT가 아닌 타 표적이 수신될 경우가 있었는데 이는 현재 NCS측 서비스에서 표적수신시 타 표적이 필터링 설정 하여 NRT만 송신하였지만, 우선차례 표적, 위험단위 표적은 필터링을 무시하고 Picket측으로 자동 송신되는 기능이 있기 때문에 타 표적이 수신된 경우도 있었다.

일반적으로 무선통신 환경특성상 DTS를 이용한 데이터 송수신 시 데이터가 겹치는 현상이 발생하던 RCI의 System Status창에서 확인이기도 하는데 본 실험에서는 근접거리내 UHF 통신시험을 수행해서 Rollocall 동안의 System Status창에서 확인한 데이터 겹침 현상은 없었다.

추가 실험으로 NCS에서 NRT를 15개부터 1개씩 증가하여 각 1회씩 송신하였을 때 Picket측에서 22개까지 2초 이내에 수신하였다.

4. 결론
위 실험을 통해 무선통신에서 데이터 오류에 의한 데이터 송신불량 등의 시간을 고려하여도 본 논문에서 제시한 통신 프레임을 이용 시 송수신 요구 시간의 8초 이내에 한국해군 수상투수단급 대함유도단에 점검 대응 가능한 최소한의 메시지를 송수신 할 수 있는 가능성을 확인하였다.

향후モデル의 DTS 개발, 전투단 가입개조간 통신방식의 개선, 다양한 종류의 위협에 대응할 수 있도록 통신 프레임 설계 및 설계된 통신 프레임을 각 함장 전투체제의 이동하여 단단한 채로 처리할 수 있도록 전투체계 설계에 채용한 적으로 대한해군, 수난 사례의 협동리단은, 전차전 협동대응 등이 해군에서 보유하고 있는 CEC체계와 유사한 국방 정보체계 개발에도 한 발 다가갈 수 있을 것이다.

참고문헌