A Design and Development of DICOM Camera System

Dae-Jin Jang*,
*LINC, Keimyung University

요약
최근 정보 및 의료산업계에서 원격진료에 대한 관심이 매우 높아지고 있다. 본 연구에서는 모바일 PACS 시스템을 개선한 XC(External Photography Camera) 유형의 DICOM 영상확득 장치 설계 및 개발 결과를 제시하며, 또한 고용량의 DICOM 이미지를 스마트기에 효율적인 전송하기 위한 모바일 게이트웨이 설계 결과를 제시한다.

1. 서론
CT나 MRI를 통해 촬영된 영상정보는 방사과 진단용 영상장치, 외래 및 병실 및 응급실에 설치하는 임상용 영상장치, 방사과 전문의가 복수 영상처리를 이용할 경우 사용되는 복수 진단용 영상장치 등으로 구분된다. 최근 스마트기에의 보급 증가로 모바일 이미지 및 의료영상은 응용한 PACS 시장 활성화가 기대되고 있으며 의료영상에 대한 안전 및 확장성 기능에 진단 및 처방 기능까지 포함하는 다양한 형태의 서비스 확대가 예상되고 있다. 특히, 국내의 의료산업기술 확장과 동시에 모바일 PACS 시장 활성화가 기대되고 있으며, 다양한 형태의 의료영상 서비스 확대가 기대된다. 또한, 원격진료 시스템의 국가적 정책지원 및 인프라 구축을 기반으로 PC, 스마트폰, 스마트패드 등 사용자의 종류에 상관없이 영상조회가 가능하도록 환원되는 기술과 보안 프로토콜을 적용한 사용자 인증 기술 등 모바일 이미지 처리기술을 응용한 솔루션 시장이 확대되고 있다. 본 연구팀은 고용량의 DICOM 이미지를 스마트기기로 통해 의료 진단보조 장치로 활용하기 위하여, 이미지를 수집 및 전송할 수 있는 DICOM 카메라 장치 및 고용량의 이미지 전송호출을 개선한 모바일 게이트웨이 시스템을 설계 및 개발하였다. 본 논문에서는 이러한 시스템 개발의 최종 결과들로서 XC 유형의 카메라 장치 설계 및 실시사항에 대해 설명한 결과들을 제시한다. 본 논문에서는 2장은 시스템 설계 및 구현을 위한 권

1) 본 과제(결과물)은 교육부의 재원으로 지원을 받아 수행된 산학협력 선도대학(LINC) 육성사업의 연구결과물입니다.
제들이 DICOM을 제네임으로서 국제 의료영상 표준으로 자리잡게 되었다.

PACS는 DICOM이라는 국제 의료영상표준을 준수하고 있으며, 많은 의료기기 제조사들도 동 표준을 채택하고 있어 의료영상 및 자료 교환에 용이함에 따라 병원간 협진체계 구축 및 원격진료 환경구축에 기반이 되는 시스템이다.

결제적·산업적 측면

의사 및 입상의들의 시간 줄약 : 판독을 할 때나 입상의들이 환자진료를 위하여 이전의 필요등을 참조하고자 할 때, 필요없는 소재를 파악하기 어려워져 방사선과, 의료나 병상 등의 필요없음을 찾기 위하여 돌아다니며 낭비하는 시간이 많으며, 이는 PACS를 도입함으로써 시간 낭비를 줄일 수 있다.

필름 비용의 대폭적인 감소 - PACS 시스템이 완성되면 필름 사용이 10% 아래로 감소하면, 90% 이상의 필름 비용을 절약할 수 있다.

현재 많은 병원들이 기존의 이날로그 방식에서 디지털 방식으로 전환을 시도하고 있으며, PACS 도입에 따른 기술적인 성과와 함께 재정적인 이슈와 EHR, HIS, RIS 등 형태와 같은 여러가지가 공존하고 있는 상태이다.

3. 설계 구성도 및 구현 결과

![DICOM Viewer]

PACS 서버

Mobile DICOM Viewer

XCAM Viewer

![DICOM Viewer]

XCAM Tablet

TabletPC

STUDY 하고

![DICOM Viewer]

XCAM Gateway

![DICOM Viewer]

XCAM Scanner

3.1 XCAM DICOM 카메라 시스템 정의

- XC 유형의 DICOM 영상처리 장치 개발
- X-Ray, CT, MRI, PET 등과 같이 병원에서 사용하는 DICOM 영상처리 장치의 한 유형
- 환자 위치(위치 상태 등 변화)를 DICOM 형식으로 환경하여 PACS 서버에 전달하여 보관
- 실험에서 자유롭게 영상을 활용할 수 있는 모바일 장치
- PACS 서버에 저장된 영상을 언제든지 의사가 관독기(PC)로 가져와 관독 가능(X-Ray, CT, MRI, PET 영상 관독 방식과 동일)
- 기존 DSLR 카메라로 촬영하여 PC 파일로 보관하고 활용하는 체제를 개선(외부파, 성장과)

3.2 개발 목표

활성화 사진으로 DICOM 파일을 생성하는 XC 전용 DICOM 영상처리 개발

(그림 2) 사진파일(최, JPEG 포맷) 및 DICOM파일(최, DICOM 포맷)

- DICOM 카메라 소프트웨어 : DICOM 정보모델 편집 후, DICOM 객체생성을 통해 최종 파일을 생성/저장/전송한다.

(그림 3) DICOM 파일 생성과정

- 350 -
4. 결론

본 논문에서는 PC 기반의 활용방식을 일체형 단말기
기로 개선함으로써 실내에서 자유롭게 영상을 활용할 수
있는 XC 유형의 DICOM 영상화학 장치를 설계 및 개발
하였다. 본 연구팀의 3년 동안의 연구결과 및 연구결과가
미치는 다양한 측면의 결과효과를 제시하였다.

막대기 예산과 인프라가 소요되는 대형 PACS 시스템
을 구축이 한도된 병원을 대상으로 (성형외과 및 피부과)의
로진단용 이미지 처리 손목선 개발하였으며, 스마트기기를
활용한 신규 사업부분이 진출을 예상할 수 있다.

참고문헌
[1] 장대진 외 2명, “DICOM 이미지 전송효율 개선을 위
한 K-PACS 캐이드웨어 시스템”, 제36회 한국정보처리학
회 추계학술발표대회 논문집 제18권 제2호, 2011.11
[2] 박대웅, "웹니스 관리로 하여 상황규칙과 분확실성 표
현을 포함한 통합된 온돌로시 상황모델", 게명대 산업기술
연구소 논문집, 2010.06
[3] 이정연, 박상철, 원희정, "의학 영상 판독을 위한 모바
일 DICOM 영상 투어 개발", 한국산업정보학회논문집 제
14권 제3호, 1229–3741, 2009
[4] 정지현, 이정일, 김동성, "IEEE 802.15.4를 이용한 디바
이스 역선의 무선 캐이드웨어 설계에 대한 연구", 대한
전자공학회 2007년도 학계종합학술대회 논문집 I (통신/신
호처리/산업전자) 제30권 제1호, 2007
[5] 정철훈, 김경훈, 이현준, "반환-직기 기법을 통한 다중
전송을 지원 무선랜 캐이드웨어 설계 연구", 한국정보과학
회논문지: 컴퓨터의 실제 및 에어 제18권 제6호, 2012
[6] 식품의약품안전처 의료기기안전국, "의료영상장비전송
장치(PACS) DICOM CD 데이터 검증 물리”,
http://www.mfds.go.kr/medicaldevice/index.do