버섯농장 데이터 관리 시스템에 관한 연구

*황선명, 박성욱, 양석우, 손민수, 임재성, 김성규
*대전대학교 컴퓨터공학과 교수
대전대학교 컴퓨터공학과
e-mail:ppppforte@gmail.com

Farm Data Management System

Sun-Myung Hwang, Seong-Uk Park, Suk-Woo Yang, Min-Soo Son,
Dong-Sub Lim, Jeoung-Seop Kim, Sang-Kyu Kim
-Professor, Dept of Computer Engineering, Daejeon University
Dept of Computer Engineering, Daejeon University

요 약

농촌의 많은 농장에서는 데이터 처리 및 분석 시스템에 대한 필요성을 느끼면서 지내오고 있다. 본 논문에서는 데이터베이스 시스템을 집계시켜서 기존 업계에서 간단한 계산만 이루어지던 농장 데이터 관리 시스템을 효율적으로 개발하여 데이터 분석 및 확인 시스템을 개발하였다. 본 연구에서 개발한 데이터 시스템의 실행 부서농장에 설치 후 실험을 통하여 기존 방법 대비의 정확성, 신속성 그리고 신뢰성을 갖는 분석 시스템을 구축하였다.

1. 서론

오늘날 농경사회는 많은 변화를 맞이하고 있는 데, 기존 7080세대들의 귀농으로 인한 농장, 농업 동통에 대한 관심도가 높아지고 있으며 귀농 빅데이터와 주요 열리는 농장에 대한 관심도는 날로 높아지고 있으며, 이로 인하여 자연스럽게 농경과 IoT의 접목 시스템은 사회의 중요한 화두가 되었다. 이런 현상에 비해 현재 농경사회는 농업에서 나오는 각종 데이터들을 관리하고 분석하는 시스템이 많이 부족한 상황이다.

최근 IoT와 함께 사회의 주목을 받고 크게 성장해 나가고 있는 사업인 데이터 관리 시스템은, 빅 데이터 라는 키워드와 함께 현대 사회에 있어서 분석 등 데이터 관련 처리 관련에 있어서 2013년 10대 IT 전략 기술 중 하나로 꼽히기도 하였다.[1] 이런 빅 데이터 등의 데이터 관리 시스템의 향상에 기반 해야 하는데 데이터의 신뢰성이 보장되지 않는다면 그 데이터 시스템은 완전히 필요성이 실현된 데이터 시스템이라고 볼 수 있다. 데이터를 사용하는 클라이언트의 입장에서 신뢰할 수 없다면 그로인한 데이터 분석 등의 모든 면에서 사업적인 부분이 지정을 받기 때문이다. 이런 것에 있어서 데이터의 신뢰성을 높이는 방법으로는 데이터들의 유실 방지 및 효율적인 프로그램 데이터베이스 접근을 위한 인터넷 데이터 서비스 장치가 필요하였다. 기본 데이터베이스를 로컬 시스템으로 구축하지 않고 NAS 서버를 이용하여 그 안에 데이터를 저장 하여 어느 곳에서도 프로그램을 설치하면 데이터 입력 및 관리가 가능하게 하여서 프로그램에 대한 접근성을 더욱 높였다. 이는 프로그램이 특정 컴퓨터에서 작동 시 해당 컴퓨터의 오류 등으로 인한 불상사 등, 여러 대치상황에 유연하게 대처할 수 있었다.

본 논문에서는 이런 농업종 하나인 버섯농장에 데이터 분석 처리 시스템을 개발하여 기존 수기식 및 엑셀식으로 하던 방법 보다 편의성 및 신뢰성을 높여주는 분석 시스템을 개발하였다.

2. 버섯농장의 버섯 제배 시스템

본 논문에서 연구 대상으로 삼은 버섯 농장에서는 그림 1과 같은 사이클을 가지고 있는 상태이다.

![그림 1] 버섯농장의 버섯 제배 방식 사이클

이러한 방식을 통하여 벼룩을 제거하려는 버섯농장은 버섯을 제거하는데 있어서 그림 2와 같은 전체 사이클을 가지고 있고 그 사이사이 데이터가 발생되어 그 데이터들을 입력 하는 방식이었다.
기획하였다. 해서 동급별 관계량이나 동급별 가격
등에 대한 데이터관리를 가능케 하였다. 그리고
판매 업체에 대한 판매 업체 리스트 테이블과, 판매
업체에 대한 구입량 등에 대한 정보를 수집하고
관리하기 위한 구매자 테이블을 별도 구성하여
사용자의 데이터를 구성하였다.
이를 통해 프로젝트의 기초적인 E-R 다이어그램은
다음과 같다.

3. 시스템 구현
3.1 전체 시스템 아키텍처

[그림 4] 전체 시스템의 전체적인 아키텍처
수학 분석 모듈에서는 현재 수학 중인 각 동의 입력 데이터를 바탕으로 현재 상태와 해야 할 일을 보여주고 작년 대비 동별 수확량을 비교한다. 만약 작년 데이터가 없으면 이번 년도 데이터만을 보여준다. 비슷한 양상은 수학 시작 후 보동 14일 후 침봉을 하게 되는데, 생합에 따라서 14일 이후 침봉을 하는 경우도 있기에 사용자가 침봉을 입력하기 전까지 계속 침봉 상태를 보여주게 된다. 작년 대비 동별 수확량은 입력된 동의 생산량을 동별로 더해 그래프로 보여주어 작년과 올해 각 동별 수확량을 비교 할 수 있게 만들었다.

분류 분석 모듈에서는 작년 대비 동급별 수확량을 보여주게 되는데 작년 데이터가 없으면 올해 데이터만 보여주게 된다. 입력된 작년과 올해 입력된 각 동급별 수확량을 더해 그래프로 보여주어 작년과 올해 각 동급별 수확량을 비교 할 수 있게 만들었다.

구매 분석 모듈에서는 구매 업체별 누적 구매량, 가장 많이 구매한 업체, 업체별 평균 구매가, 업체별 총 구매가, 작년 대비 동급별 판매량과 판매 금액을 분석해 비교해 주는 기능이 있다. 각 업체마다 구매한 동급이 다르기 때문으로 이연 기업의 몇 동급을 평균적으로 알아서 구매 했으며 총 구매한 양은 얼마나인지 한눈에 보고 관리하기 위해 데이터 시트 형식으로 값을 보여준다. 동급별 판매량은 업체에 상관없이 작년과 올해의 총 동급별 판매량을 더해 그래프로 비교 할 수 있으며, 동급별 판매 금액 역시 업체에 상관없이 동급별 판매 금액을 더해 그래프로 작년과 올해 상황을 비교 할 수 있게 했다.

통계 파트에서는 기간 별 각 동의 수확 상태, 각 동의 구매량 상태, 각 동의 판매량 상태를 동계로 보여주게 된다. 이 통계는 모든 데이터 시트 형식으로 보여주게 된다. 각 동의 수확 상태는 각 동에서 사용자가 지정한 날짜 범위 내에서 가장 마지막으로 넣은 데이터의 값과 해당 동의 수확량 전체를 더한 값과 평균 값을 구해 각각 최근 수확량, 수확량 합계, 수확량 평균을 보여주게 된다. 각 동별 구매량 상태는 사용자가 지정한 날짜 범위 내에서 각 동별 가장 마지막으로 저장한 구매 데이터를 얻어오고 해당 동별의 기간 내 평균 구매 가격, 총 합 구매 가격을 얻어와 작년과 비교해 동적을 구해 최종적으로 최근 구매량, 최근 구매 가격, 평균 구매량, 평균 구매가, 최고 구매가, 최저 구매가, 동력률, 총 구매량, 총 구매액을 보여준다. 각 동급의

![그림 5] MySQL로 구현한 데이터베이스 스키마가 완전히 키가 없는 것이 특징인데, 데이터베이스를 참조 시스템으로 만들어 자동화 시스템 구현는 보다 편리시킨다. 사용자가 개별적으로 입력을 시킨다는 부분에 포커스를 맞추어 서로 연관되어있는 데이터베이스 구축이 아닌 개별 데이터베이스로 옵직하게 사용자의 개별 입력에 맞게 제작하였다.

3.3 데이터 분석 시스템

![그림 6] 각 동의 평균 수확량 및 총 수확량을 가져오는 프로시저.
사용자가 입력한 데이터를 각각의 수확, 세배, 등급, 고객 리스트별로 나누어진 각기 다른 테이블에 저장 한다. 이렇게 세부적으로 나누어진 데이터에 의해 데이터를 검색하게 되는데 세부적으로 나누어진 데이터를 처리할 수 있게 된다. 여기서 이 논문에 서 실험한 버킷 농장처럼 세배 장소가 18개의 동으로 나뉘어져 있을 경우 동별의 상황을 읽기 위해서는 18개의 동의 정보를 얻어올 필요가 있어 이 때 DBMS에 보내는 튜리의 양이 동의 것 수인 18번이게 된다. 이 방식은 DBMS에 부하를 줄 뿐만 아니라 처리 속도도 높기 때문에 한번의 튜리로 데이터를 검색해 찾을 수 있는 MySQL의 프로시저 (Procedure) 기능을 이용한다. 이 프로시저의 기능을 이용하면 DB서버에 입시로 데이터를 저장한 데이터를 만들고 그 안에 18개의 동 정보를 넣은 후 한번 에 클라이언트로 전송함으로써, 튜리의 수를 18번에서 1번으로 줄이는 기능이며 입시 데이터로 메모리를 사용하기 때문에 입시로 데이터를 저장시 발생할 수 있는 오버헤드가 적다. 또한 튜리를 처리하는 동안 데이터를 사용하지 않으므로 데이터 통신 에 의한 지연 현상도 적어진다.

3.4 시스템 구현 화면
기본적으로 프로그램 창 화면에서는 18개 동에 대해 서 현재 상황과 임상일 등, 각 동에 대한 정보를 눈 에 보여주며 각 메뉴로 접근하여, 데이터 분석 및 저장관리를 한다. 입력 화면에서는 각 동의 현재 상황이나, 수확량 등에 대한 상태를 입력하게 되는데 이는 입력 시 NAS에 연결된 데이터베이스에 저장되며, 그림 6과 같은 튜리로 통하여 작업이 이루어진다. 그 후 데이터에 관한 분석 장을 통해 데이터에 대한 동계 그래프를 확인하여 통계자료로 사용이 가능하다.

[그림 7] 메인화면 [그림 8] 입력화면

4. 결론과 향후 발전방향
현 시스템의 구현상 데이터가 동별로 입력되지 않 고 생산 시마다 관리자가 일일이 입력을 해 주어야 한다는 것에 있어서 불편한 점이 있다. 이 점은 추 후 셀러를 개발 후 적용이 되어, 농장에 맞는 공정시스템을 도입 후 자동입력 방식으로 변환한다면 이는 농장에 있어서 더욱 더 효율이 높고 자동화되어 잘 은 시스템으로 발전할 가능성이 있다.

감사의 글
본 연구는 중소기업청에서 지원하는 2014년도 신학 연합력 기술개발사업의 연구수행으로 인한 결과입니다.

참고문헌
[1] "Gartner"
http://www.gartner.com/technology/research/top-10 -technology-trends/
[3] 박성현, "뇌를 자극하는 C# 4.0 프로그래밍"
2011.08
[4] MSDN