증가된 CO₂의 식물에 미치는 O₃ 피해 완화

이종규¹, 우수영¹, 오경석^{2*}, 곽명자¹, 인친카인¹, 장지휘¹, 이양¹, 김해냄¹, 김지은¹ ¹서울시립대학교, ²국립농업과학원

Elevated CO₂ Mitigates O₃ Impacts on Plants

J. K. Lee¹, S. Y. Woo¹, K. S. Oh^{2*}, M. J. Kwak¹, I. Khaine¹, J. H. Jang¹, L. Yang¹, H. N. Kim¹ and J. E. Kim¹

> ¹Department of Environmental Horticulture, University of Seoul, ²Department of Agro-Food Safety, National Institute of Agricultural Sciences

Plants are influenced by important environmental factors such as global climate change caused by human activities. Especially, climate change and air pollutant are seriously threatening agriculture plants. Many studies have focused on the response of plants under climate change, but the interactive effects of air pollution and climate change are poorly studied. According to Intergovernmental Panel on Climate Change (IPCC), the atmospheric CO_2 concentration is projected to increase between 580 and 700 ppm by the end of this century. Along with CO_2 , tropospheric O_3 is predicted to increase 20% more by 2050. This review aimed to study response of agricultural plants under elevated carbon dioxide (CO_2) and ozone (O_3). Elevated CO_2 effects the plant growth by increasing in net photosynthesis rate and may affect the cell cycle by enhancing the carbohydrates of the plants. Elevated CO_2 may have positive effects on plants. However, O_3 enters leaves through the stomata and generate reactive oxygen species (ROS) which decrease net photosynthesis rate and chlorophyll contents. Interactive impacts of CO_2 and O_3 can occur in agricultural plants by decreasing stomatal cOQ can prevent or delay negative effects of O_3 on agricultural plants by decreasing stomatal conductance.

Acknowledgements

This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01168801)" Rural Development Administration, Republic of Korea.

^{*} Correspondence to : ohks@korea.kr