
Ⅰ. Introduction

Nowadays, robots become part of our world in
many ways. Robots are used to accomplish many
functions, from helping people in homes, workplaces,
and schools, to replacing people to assemble things
in the industrial unit and even perform security
services. Among kinematics mobile robot we have
TurtleBot 2. TurtleBot 2 is a personal mobile robot
made for research and academic purposes [1].
Therefore, TurtleBot 2 can act as a domestic robot
meant to accomplish many kinds of tasks such as
bringing water, drive in an internal platform and
take pictures, used as a basket to transport items in
the office and so forth.

Until now, several projects using Robot Operating

* corresponding author

System (ROS) to navigate TurtleBot robot have been
implemented such as navigate in a new and
unknown platform using Simultaneous Localization
and Mapping (SLAM) algorithms which are used to
build a map [2]. However, ROS has its strengths
and weaknesses. ROS is mainly running on Ubuntu
and has no real support for microcontrollers and
other embedded systems. Therefore, to control
TurtleBot, ROS must run only on a computer. In
addition, compared to Microcontroller, it uses lots of
more power and storage and has no guarantee of
real-time control [3]. Hence, using another operating
system which supports smaller devices will result in
increased performance and economic benefit. In that
context, Windows 10 IoT core as the Operating
System can be a good fit.

Windows 10 IoT Core is an optimized version of
Windows 10 which is made to run on smaller
devices [4]. Designed for the internet of things

Windows 10 IoT Core 기반

Non-ROS TurtleBot2용 원격 제어 소프트웨어 구현

인가바어 원스포어* · 김민영 · 장종욱
동의대학교 컴퓨터공학과

Implementation of NON-ROS remote control software of TurtleBot 2

based Windows 10 IoT core
Ingabire Onesphore* · Minyoung Kim · Jongwook Jang

Dong-eui University

E-mail : ingabireonesphore10@gmail.com

ABSTRACT

This paper intends to implement a software that controls TurtleBot 2 remotely. The moving of the
robot TurtleBot 2 can be controlled using command control based on Windows 10 IoT core instead of
the Robot Operating System (ROS). The implemented software allows the user to move remotely
TurtleBot 2 in any specified direction and perform the monitoring such as reading feedback data from the
robot. Through TCP/IP and serial communication technology, TurtleBot 2 can successfully receive
command control and send feedback to the user. Using C# programming language, two Universal
Windows Platform apps (client app and server app) have been implemented to allow communication
between the user and TurtleBot 2. The result of this implementation has been verified and tested in an
indoor platform.

Keyword

TurtleBot 2, Windows 10 IoT core, UWP, TCP/IP communication, serial UART

111

한국정보통신학회 2019년 춘계 종합학술대회 논문집

projects, the optimized Operating System works on
the ARM (Advanced RISC Machine) devices and let
us use windows functionalities to build connected
devices with affordable computation solutions and
low power consumption such as the Raspberry Pi.
Furthermore, it allows objects, physical devices such
as robots to exchange data and to be controlled
across network connectivity [5].

In this paper, the implementation of NON-ROS
software is for the purpose of controlling remotely
TurtleBot 2 using windows 10 IoT core instead of
the Robot Operating System (ROS). Raspberry Pi has
been used as the embedded device, while TCP/IP
protocol and serial UART (Universal Asynchronous
Receiver-Transmitter) has been employed as
communication technology. Universal Windows
Platform (UWP) is known as the platform used
overall Windows 10 versions [6], especially on
Windows 10 IoT core. In this project, two UWP
apps have been implemented to provide
communication between the computer and TurtleBot
2.

In the following of this paper, I will show you
the system design, the materials used, the software
implementation, the result, and the conclusion.

Ⅱ. System design and implementation

In the development of this project, in order to
remotely control the TurtleBot 2, the user is
required to be in an environment where all devices
are connected. The computer and the Raspberry Pi
must be on the same wireless network infrastructure.
Below is the system design of our project

Figure 1. The system design of NON-ROS
remote control software

The system design of our implementation consists
of one computer on which run the remote-control
software. With its benefit of built-in Wi-Fi,
Raspberry Pi 3 exchange data with the computer via
the Wireless network. Raspberry Pi is connected to

the robot via the USB cable and exchange data with
it using the UART serial communication. The jumper
wires are used to supply power to the Raspberry Pi
when the robot is powered on(Figure 1).

2.1 Materials and descriptions

To implement our robot controller, a couple of
components has been used. Below, are the hardware
components used in this project:

a. A computer (Cross compiler): Inter® Core
™ i7-6700 CPU@3.40GHZ, RAM: 8GB; 64
bit of operating System type.

b. Raspberry Pi 3 Model B: incorporated Wi-Fi
and Bluetooth with 1GB of RAM

c. Jumper wires: male to female wires which
have connectors and used to connect the
components of breadboards or other
prototyping tools.

d. Kobuki robot TurtleBot2: a mobile robot
made or developed for researchers, hobbyists
and for educational purposes

e. The USB Cable A-B Male/Male type
peripheral which is compatible with most of
Raspberry Pi boards.

2.2 TurtleBot 2 description
TurtleBot 2 is the most well-known low-cost,

open source mobile robot developed for education
and research. TurtleBot 2 is equipped with a
powerful Kobuki robot base [7]. The driver of
Kobuki exchanges data with the robot by using the
predetermined protocol. Normally, the robot receives
command control from the driver and send back
some feedback information or sensor reading. Then,
the feedback data sent, and the commands received
are converted into bytestreams that will be used for
exchanging data via the interface [8]. The process of
moving or controlling TurtleBot 2 remotely consist
of sending the command control using serial UART
and control the wheel motors to move the robot.
Then, according to the command received, TurtleBot
can move in any distinct direction. The table below
describes the structure of bytestream which control
the wheel motors of the robot.

Table 1. The bytestream structure [8]
A bytestream consists of 4 parts: two headers,

112

한국정보통신학회 2019년 춘계 종합학술대회 논문집

length, the payload, and Checksum. The headers:
header 0 (AA) and header 1 (55), are the bytes that
can’t be changed for both bytestreams, command
control, and feedback data. The length specifies the
length of the next bytes, the payload holds the
actual data of bytestream and contains several
sub-payloads. The checksum certifies the integrity of
bytestream [8]. Table 2 shows the structure of the
entire bytestream with sub-payload included:

Table 2. Entire bytestream and sub-payload
included [8]

Knowing the structure of the entire bytestream,
and the part of the Payload that controls the wheel
motors to move TurtleBot, then it’s up to the user
to determine the velocity in order to control the
robot in any direction.

At the other side, when the robot is powered on, it
sends some feedbacks data occasionally in 50Hz. The
figure below shows the feedback sent by the robot.

Figure 2. Feedback data from the robot

Knowing the structure of the bytestream, the start
points of the payload and the length of the following
bytes, the user can read some feedback from the
robot such as signals from the docking station, cliff
sensors data, basic core sensor data and so forth.

2.3. Software implementation
To implement our project, a computer and

Raspberry Pi are used to exchange data over Wi-Fi.
The computer runs Windows 10 as Operating
System (OS) and Windows 10 IoT core has been
used on the Raspberry Pi as OS. The target of this
project is to implement a NON-ROS remote control
software that allows the computer to control the
TurtleBot 2 remotely. UWP applications are
considered as the main app type for Windows 10
IoT core. Therefore, in this project, UWP is used to
implement a client app and server app. The client
app will run on a computer and the server app on
Raspberry Pi.

More specifically, Raspberry Pi is mounted on the

robot and communicate with the robot through the
serial port. With its advantage of built-in Wi-Fi, it
exchanges data with the computer through Wireless
network. Using Visual Studio, the server app will be
deployed remotely to the Raspberry Pi and begin
listening for the incoming connections. Then, the
client app will run locally on the computer and
connect to the Raspberry Pi by providing the address
and port on which the server app is listening to.
After this step, the Raspberry Pi can now receive a
command from the computer through TCP/IP.

Moreover, when receiving the command control
from the computer, the Raspberry Pi needs to send
it to the robot via the serial port. When launching
the server app and waiting for the incoming
connections, at the same time, the server app will
open the COM port for communication using serial
UART technology. Then, once the command is
received from the computer, the command is sent
automatically to the TurtleBot 2. The flowchart of
this implementation is shown in figure 3.

Figure 3. Flowchart of server app and client app

Ⅲ. Results

3.1 Sending command control
To control TurtleBot 2, the computer is

communicating with the Raspberry Pi via WiFi.
When the server app is launching on Raspberry Pi,
it will begin listening for the incoming connections
and open COM port for communication to the robot.
Hence, the client app will be launched on a

113

한국정보통신학회 2019년 춘계 종합학술대회 논문집

computer and connect to the server app using the
address and the port on which the server app is
listening. Then, the user can control remotely
TurtleBot 2 using the UI (User Interface).

Figure 4. The UI of controlling the robot

As can be seen in figure 5, clicking on any
button on the user interface will execute a command
control that is sent to the TurtleBot 2 and allows
the robot to move in any specified direction.
According to the desired direction, the TurtleBot 2
can perform different movements: left-turn, right-turn,
forward, backward and stop.

3.2 Reading feedback data from TurtleBot 2
Normally, when TurtleBot 2 is powered on, it

sends occasionally some feedbacks data in 50Hz. In
our project, battery status and the signals from the
docking station were chosen to be read from the
robot. When the server app is running, it reads the
bytestream which contains the information we need
and send it to the client remotely.

Figure 5. Feedback results from TurtleBot 2

As shown in figure 6, the client app displays the
current time and the remaining volts in the battery.
Kobuki has 3 IR receivers. When the TurtleBot is
located into the field of a docking station, the robot
will catch the signal according to the IR receiver
which is facing the docking station. As can be seen
in figure 6, the IR receiver left is facing the
docking station and has the value 32.

Ⅳ. Conclusion

This study has successfully implemented
NON-ROS remote control software-based windows
10 IoT core. UWP has been used as an open source
API to implement the software. Raspberry Pi which
is mounted on TurtleBot has been employed to
communicate with the computer and exchange data
over a Wi-Fi network. The robot can now receive
the command control remotely and move in any
specified direction. This was the first step of our
project to build a program that controls the robot
remotely. The next step will be to add other
features that allow the robot to move autonomously
and accomplish several tasks in an internal platform.

Acknowledgment

 This study was conducted as a result of the research
on the ICT Research Center support project of Ministry
of Science, Technology, Information, and Communication
and the Institute of Information and Communication
Planning and Evaluation (IITP-2019- 2016-0-00318).

References

[1] Robotnik automation. Applications of Kobuki robot
TurtleBot2 [internet], available : www.robotnik.eu/
aplicaciones-del-nuevo-robot-kobuki-turtlebot-ii/.

[2] Arbnor Pajaziti, Petrit Avdullahu, “SLAM – Map
Building and Navigation via ROS#”, in International
Journal of Intelligent Systems and Applications in
Engineering, IJISAE, 2014, 2(4), 71–75.

[3] Yukihiro Saito, Takuya Azumi, Shinpei Kato,
Nobuhiko Nishio, “Priority and Synchronization
Support for ROS”, in 4th International
Conference on Cyber-Physical Systems, Networks,
and Applications (CPSNA), 2016 IEEE.

[4] Windows 10 IoT Core documentation, available:
https://docs.microsoft.com/en-us/windows/iot-core/w
indows-iot-core.

[5] Mohamad Khairi Ishak, Muhammad Izzat Roslan
and Khairol Anuar Ishak “Design of Robotic
Arm Controller based on Internet of Things (IoT)”.

[6] Windows IoT Core documentation, Developing
foreground applications. Available: https://docs.
microsoft.com/en-us/windows/iot-core/develop-your-
app/buildingappsforiotcore.

[7] Turtlebot Tutorials, available:
www.clearpathrobotics.com/assets/guides/turtlebot/[8]
Kobuki Protocol Specification, available:
https://yujinrobot.github.io/kobuki/enAppendixProto
colSpecification.html.

114

