논에서의 간헐적 관개와 배수가 에너지 교환에 미치는 영향: 물저류항을 중심으로

이승훈¹, 김준^{1,2,3,4,5}*, 강민석⁶, 류영렬^{1,2,3}

¹서울대학교 협동과정 농림기상학전공, ²농업생명과학연구원, ³생태조경·지역시스템공학부, ⁴평창캠퍼스 그린바이오 과학기술원, ⁵아시아연구소 미래지구 프로그램, ⁶국가농림기상센터

Effects of Intermittent Irrigation and Drainage on the Energy Exchange in a Rice Field: Focusing on Water Storage Term

S.-H. Lee^{1*}, J. Kim^{1,2,3,4,5}, M. Kang⁶ and Y. Ryu^{1,2,3}

¹Interdisciplinary Program in Agricultural & Forest Meteorology,

²Research Institute for Agriculture and Life Sciences,

³Department of Landscape Architecture & Rural Systems Engineering,

⁴Institute of GreenBio Science and Technology, Pyeongchang,

⁵Future Earth Program, Asia Center, Seoul National University,

⁶National Center for AgroMeteorology, Seoul, 08826, Korea

관개와 배수가 간헐적으로 이루어지는 논에서 지표-대기 상호작용에 의해 변화하는 지표 에 너지 수지 방정식은 물저류항을 포함하여 다음과 같이 쓸 수 있다: $R_n = \lambda E + H + G + W + B + M$. 여기서 R_n 은 순복사, λ E는 잠열플럭스, H는 현열플럭스, G는 토양열플럭스, W는 물저류, B는 생물량열저류, 그리고 M은 신진대사(또는 생화학에너지)에 너지저류를 나타낸다. 상대적으로 크기가 작은 마지막 두 항은 무시할 수 있으나, 강수와 관개 에 의해 형성되고 배수와 증발에 의해 감소하는 논의 물 층에 저장되는 열에너지, W는 무시할 수 없다. $W=\rho_w c_w z_w \frac{\partial T_w}{\partial t}$ 이며, 여기서 ρ_w (kg m³)는 물의 밀도, c_w (J kg¹ K¹)는 물의 비열, z_w (m)는 논의 수위, 그리고 T_w (K)는 물 층의 평균 수온이다. ${
m W}$ 를 정량화하고, 그 변화와 조 절 인자 및 에너지 배분에 미치는 영향을 파악하기 위해, 국내 플럭스 관측망인 KoFlux의 강원 도 철원 논 관측지(CRK)에서 2018년 생장기인 4월 27일부터 8월 28일까지 관측된 수위와 수온 자료를 사용하였다. 이 기간 동안 총 강수량은 621 mm, 수위의 변화는 0 - 0.1 m, 배수가 되 어 zw = 0인 날은 총 124일 중 26일이었으며, 수온의 범위는 7.0 ~ 35.7 ℃ 였다. W는 최저 -215 W m⁻²에서 최고 318 W m⁻²의 범위를 보였고, 일적산한 경우에는 -1.09 ~ 1.43 MJ m⁻² d⁻¹ 로서 W가 음의 값일 때(에너지의 발원) R_n 의 평균 6%였고, 양의 값일 때(에너지의 흡원) R_n 의 평균 2%를 차지하였다.

^{*} Correspondence to : fcandhk@outlook.com

POSTER 43

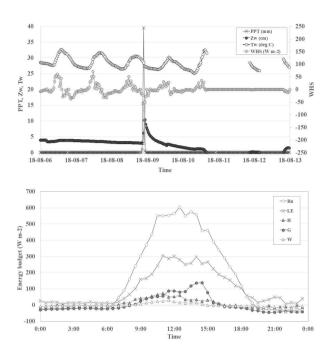


Fig. 1. A weekly time series (on 6-12 August, 2018) of the precipitation (PPT), depth of water (Zw), water temperature (Tw), and water heat storage (WHS) (left) and diurnal pattern of energy budget in same period (right).