OPB22) 일단위 유출량과 인공신경망 모형을 이용한 첨두유출량 산정

이정우

한국건설기술연구원 국토보전연구본부

1. 서론

수공구조물 설계의 기본이 되는 홍수빈도분석을 위해서는 시단위 이하의 첨두유량 자료가 필요하다. 그러나, 짧은 시간간격의 첨두유량 관측치가 없거나 불충분한 경우에는 강우-유출모형을 이용하여 유량을 산정해야 한다. 이러한 방법은 매 홍수사상 각각에 대해 모델링을 수행하고 검보정 과정도 여러번 거치게 되어 전문가 숙련도가 요구되고 많은 시간이 소요된다. 본 연구에서는 이의 대안으로 인공신경망(Artificial Neural Network, ANN)을 이용하여 시간단위 첨두유량을 산정하는 모형을 구축하고, 이를 국내 6개 댐유역에 적용하여 모형의 성능을 평가하였다.

2. 자료 및 방법

충주댐, 소양강댐, 용담댐, 안동댐, 임하댐, 섬진강댐 등의 유입량 관측자료를 수집하고, 시간단위 첨두유입량을 종속변수로, 첨두홍수가 발생한 날의 일평균 유입량과 그 하루 전, 후의 일평균 유입량을 입력변수로 하는 ANN 모형을 구축하였다. 모형의 최적 구조는 몬테카를로 교차검증(Monte-Carlo Cross-Validation)을 통해 결정하였다. Sangal(1983), Fill & Steiner(2003) 등 경험적인 첨두유량 산정 방법 적용 결과와의 비교를 통해 ANN 모형의 모의 성능을 비교, 평가하였다.

3. 결과 및 고찰

각각의 대상유역에 대해 첨두유량의 관측치와 모의치간의 제곱근오차와 결정계수를 계산한 결과 기존의 경험적인 방법에 비해 정확도가 우수한 것을 확인하였다. Fig. 1은 임하댐 유역에 대해 ANN 모형과 Fill & Steiner 방법 적용 결과를 비교하여 예시한 것으로 첨두유량이 과소산정된 Fill & Steiner 방법에 비해 ANN 모형이 관측치에 보다 더 잘 적합한 것을 확인할 수 있다.

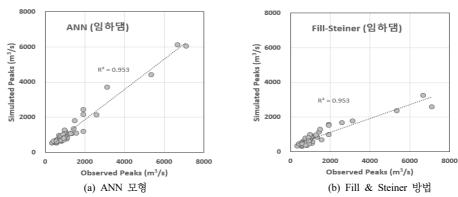


Fig. 1. 임하댐 유역 첨두유량 산정 결과.

4. 참고문헌

Sangal, B. P., 1983, Practical method of estimating peak flow, Journal of Hydraulic Engineering, 109, 549-563.
Fill, H. D., Steiner, A. A., 2003, Estimating instantaneous peak flow from mean daily flow data, Journal of Hydrologic Engineering, 8, 365-369.

감사의 글

본 연구는 한국건설기술연구원 주요사업 "수공구조물의 수문학적 안전성 평가시스템 개발" 과제의 연구비 지원에 의해 수행되었습니다.