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JORDAN ALGEBRAS

1. It is the purpose of the present paper to give
a brief survey and present status of Jordan
algebras with their connected fields. A noxn-asso-
ciative (not necessarily associative) algebra a
over a field @ is a vector space over ® in which
a bilinear composition is defined. That is, for
any pair (x,y) of elements x and y of a vector
space a there is associated with 2 product xy
in a satisfying the following bilinearity condit-
ions

(1) x(y+z)=xy+xz (y+z)x=yx+12zx

(2) alxy)=(ax)y=x(ay), a in ®.

The algebra a is said to be associctive if for
all x, y, z of a we have the associative law

(3 x(yvzi=(xy)z

A non-associative algebra a is called axn alte-
rnative algebra if its multiplication satisfies the
alternative law -

4D x*y=x(xy). yx*=(yx)x.

A ron-associative algebra a is called a Lie
algebra if its multiplication satisfies the Lie
conditions

(5) x2==0, (xydz+(yz)x+(zx)y=0.

The second of these is called the Jacobi i:dend-
ity. The general theory of Lie algebras has been
developed extensively and applications of the
theory are to be found in many other branches
of mathematics. A full account of the theory
713) written by
Jacobson. We define a jordew algebra to be a

may be found in the book

non-associative algebra a whose multiplication
satisfics the Jordan conditions

(6) xy=yx, x*(yx)=(xly)x

If an algebra satisfies one of the identities (4),
(5),(6), so does any subalgebra or homomorphic
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image of it. If {a,) is a family of algebras
satisfying one of the above, then so does the
algebra Y.%a. the complete direct sum. In
general, a class of algebras defined by a set of
identities will be closed under the operation of
taking subalgebra, homomorphic images and
complete direct sums. Conversely, a special case
of a result of G. Birkhoff [3) implies that any
class of non-associative algebras that is closed
under the operations of taking subalgebras,
homomorphic images and complete direct sums

can be defined by a set of identies.

2. It might be sad that alternative algebras
begin and end with the Cayley numbers since
they were defined in order to study the Cayley
numbers, which in turn are the only distinguished
members of that class. We give the construction
of a (generalized) Cayley algebra. Let Q be a
(generalized) quaternion algebra and C the
cight-dimensional vector space of elements of the
form: a--bl, a, beQ, ! a symbol. Addition and
scalar multiplication of these elements zre defined
in the usual way. Multiplication is defired by

(a+-bD(c+dH=(ac+udb)+(da-+be)!
where x is a non-zero element of the base field
and A is the usual conjugate of the quaternion
a. Then we have an alternative algebra which
is not associative. Under suitable conditions on
Q and g C is a division algebra, an algebra
whose non-zero elements have inverses.

It is proved by R. H Bruck and E. Kleinfeld
{4) that the only alternative division algebras
which are not associative are the Cayley algebras.
This is also proved by L. A. Skornyakov [19]
independently. Instead of going into detail we list
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a few references for the convenience of the
reader. For an introduction to some of the geo-
metrical aspects of alternative division algebras,
there is a paper by Bruck (5]). Some of the
number theoretic aspects are treated by Coxeter
(7) and Kaplansky [14]. General results about
the structure of simple alternative algebras are
due to Albert [2) and Kleinfeld [15]. The aut-
omorphisms of alternative algebras has been
touched first by Zorn [22]. If the base field of
the algebra is the field of complex numbers
then the group of automorphisms is the Lie
group G, in the Killing-Cartan clssification. An-
alogues of these groups for arbitrary fields have
been defined by Chevalley (6]. In this connection
the reader is referred to the paper [10] by
Jacobson.

3. We consider an associative algebra a over
a field ® of characteristic not two. By using the
associative multiplication of elements of a
written x.y, let us define new compositions

(D x yl=x%Xey—~yx

@ xy:%(x-y-i—y«)

The vector space structures of g together
with the new compositions (x,y] and xy give us
the Lie algebra a~ and the Jordan algebra a*
respectively.

In the theory of Lie algebras the Poincaré-
Birkhoff-Witt theorem [13] says that every Lie
algebra is isomorphic to a subalgebra of a™, a
an associative algebra. However, in the theory
of Jordan algebras we don’t have the analogue
of the Poincaré-Birkhoff-Witt theorem. A Jordan
algebra ] is said to be special if J is isomor-
phic to a subalgebra of a*, a associative. The

Jordan algebras which are not special are called’

exceptional Jordan algebras. Every special Jordan
algebra is characterized as a subalgebra of a
J-algebra. By a J-algebra we mean a commutative
algebra K (with product xy) having an additional
birary operation (X, y) defined on K which is
bilinear, antisymmetric. and satisfies
xy)=2(xyly, (%(y.2))=4{Gxy)z—(x2)y}.
Every J-algebra is of the form a*, a a suitable

associative algebra.

The Wedderburn structure theorem for assoc-
iative algebras has a Jordan algebra analogue
That is, any finite-dimensional semisimple Jordan
algebra over a field of characteristic zero is a
direct sum of ideals which are simple Jordan
algebras. We consider the classification ol simple
Jordan algebras. It is well known that the prob-
lem of simple algebras can be reduced to the
study of central simple algebras. There are four
classes of central simple Jordan algebras smong
special Jordan algebras and only one class of
exceptional Jordan algebras. That is, according
to Albert (1], Jacobson (8] and Schafer (172
if J is central simple Jordan algebras over an
arbitrary field @ then ] is one of the following
types:

A. J is of the form a*, a central simple
associative or of the form H (8 7)) = {aca | a*=a}
where a is simple with center. a separable
quadratic extension of ® and 7 isan involution.
In the latter case. J(=PX.D) is a* for a sui-
table extension P of ®.

BC. J=H(a 7)={aca | a"=a}, a a central
simple associative algebra over ® with the invo-
lution 7. The enveloping associative algebra of
J is a Also a(=0Q.a) is Q. for Q the
algebraic closure of @ and the involution 7 can
be taken to have one of the following two forms
in Q. a*=a’ or a*==q~'a’q wherc 2’ is the
transpose of a and q is any pon-singular skew
symmetric matrix. Then H, is either the set of
symmetric matrices or the set of symplectic
symmetric matrices (q™'a’q=a). In the first
case ] is of type B and in the second [ is of
type C.

D. Let M be a vector space over @ cquipped
with a non-degenerate symmetric bilinear form
(a, b). Consider the algebra J=®1OM determ-
ined by (a, b) by the rules that 1 is the identity
of J, and for a,b ¢ M the product ab is given by
ab=(a, b)1. Then the algebra J is a Jordan
algebra which is central simple if dim M >] and
is called the Jordan algebra of the bilinear jorme




(a, b) in M.

The algebras A-D are special. Besides these
we have

E. The exceptional cencral simple Jordan
algebras. These are 7 dimensional and if
the basc field is algebraically closed then such
an algebra ] is isomorphic to the algebra
H(C,, 7> of 3X3r-hermitian (Cayley) matrices
of C, relative to the product xy= é (Rey4yx).

By virtue of their exceptional character, the
exceptional Jordan algebras are perhaps the most
interesting of all Jordan algebras. The simple
Lie algebras over an algebraically closed field
fall into four classcs and five exceptional alge-
bras. These classes of Lie algebras have a definite
relationship with the classes of Jordan algebras
which mentioned above. Particularly the excepti-
onal Lie algebras are closely related to the
exceptional simple Jordan algebras. These relat-
10ns are investigated by Chevalley, Freudenthal,
Jacobson, Schafer, Springer and others. These
investigations have led to the different interpre-
tations for the new simple groups and a new
model of Cayley planes coordinated by means of
Cayley algebras. The general algebraic form of
the Jordan-Freudenthal coordinatization of the
planes has been given by Springer [20] and by
using this certain linear groups of type E; over
an arbitrary fields have been studied by Jacobson
7117 and Suh (21). There are still many unso-
lved problems in these branches to give ample
challenge to us.

The representation theory for Jordan algebras
which is comparable to its associative counterpart
and has not been touched in our brief discussion
may be found in the paper (9] of Jacobson. It
is also worthwhile noting that therc are unsolved
problems in the existing theory of Jordan algebras
and problems arising from the latest applications
of Jordan algebras to geometry.
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