BANACH ALGEBRA

A normed linear space is a linear space N in
which, to each vector z, there corresponds a real
number, denoted by |lx]| and called the norm
of x, satisfying the following properties:

(1D x1 20, and | x|} =0 if and only if x=0;

@ Ix+yll<lixll Uyl

@ Naxfi=lalixi.

The normed linear space N is a metric space

with respect to the metric d defined by d(x.y)
= }| x—y i . A Banach space is a complete normed
linear space.
Theorem 1. Let B(X.Y) be the set of all bou-
nded linear operators of a normed space X into
a normed space Y. Then B(XY) is complete if
Y is complete, where B(X,Y) is the set of all
bounded linear operators of X in Y.

Example 1, Let B(X) be the set of all bounded
linear operators of a normed linear space X into
itself. For A, Be B(X), (AB)x=A(Bx). Then

HABxll A quuénAn §BIi Ix1
ixH = ihxi - Ixl
=l|All-iIBI.

Hence |ABlI=IANI-1BI.

B(XD is a normed space, and algebraically it
is an algebra with the property 1A N-IBil >
HABY.

Let A be a linear associative algebra with
either the real or complex numbers as its field
K of scalars. The algebra is called a normed
algebra provided it is a normed space, satisfying
the multiplicative inequality || xy l < lIxl iy li+
If it is a Banach space, it is called a Banach

algebra.
If a Banach algebra A has an identity ¢, then
Hell=tHeell<leli-lNlell,so that [lellxl,

Neverthless we may be able to renorm Jie || =1.

1] 3 .  (Kwang Chul Ha)

Example 2. By theorem 1, it is evident that
B(X) is a Banach algebra provided that X is a
Banach space.

Example 3. One of the most important Banach
algebras, denoted by C(X), coasist of all bounded
continuous complex-valued functions defined on a
topological space X

Example 4, The sequences of complex numbers

a={a,} with Hatf =)3} a, | and with multipli-
cation asb defined by (a*b)..—— Za._...

)

= 1S AN0-

ther Banach algebra.

Theorem 2, Every Banach division algebra is
isomorphic to its scalar field

Theorem 3. Let A bz a commutative Banach
algebra with multiplicative identity. Then any
maximal ideal M, A/M is a division aigebra
Accordingly, it is isomorphic to the scalar field

1. Involations in Banach algebras

A Banach algebra A is called a Banach *-al-
that is, if there
exists a mapping x-—»x% of A into itself with the

gebra if it has an involution,

following properties:

1) (x+y)¥=x*+4y*

(@ (ax)*=ax*

3@ xy)*=y*x*

4 (x*)F=x.

It is an easy consequence of (4) that the invo-
lution x—x* is actually a bijection of A onto
itself. Furthermore, if (5) lix* xfi==ilx|l? is
satisfied in a Banach *-algebra, it is called A
B#*-algebra.

Example 5. Let M be a maximal ideal of A
with an identity. Then A/M is isomorphic to K
If K is a complex field, A/M is easily checked
to be a B*-algebra. Let (M) be the mapping:



FM)=x(M)=x+M. Then (M) is a mapping
of M into K where M is the set of all maximal
ideals in A. If we put the a-projective topology
on M. M is called a maximal ideal space, where
&= [%: xeA}. The mapping xR, of couse, we
have identified x-+M with some scalar in K under
the isomorphism, is called a Gelfand mapping.
Then we have the following “Gelfand-Naimark
Theorem™:

Theorem 4. If A is a commutative B*-algebra.
then the Gelfand mapping x-—»x is an isometric
*-jsomorphism of A onto the commutative B*-
algebra C(M). the set of all bounded continuous
complex-valued functions on M.

If we apply this theorem to C(X), where X is
a compact Hausdorff space, we have the following
Banach-Stone theorem:

Thesrem 5, Two compact Hausdorff spaces X
and Y arc homeomorphic if and only if their
corresponding function algebras C(X), and C(Y)
are isomorphic.

Historically speaking, a B*-algebra has orngi-
nally been called a C*-algebra by Gelfand and
Naimark, adding the following axiom: “l1+4-x*x
has an inverse”. Later in the commutative case,
Gelfand and Nzaimark proved in a rather intricate
way that the last axiom is redundant We note
that | x| =!x*1|| is easily proved in the com-
mutative case. A neat proof by Fukamiya is now
available.

A commutative B*-algebra is simply the alge-
bra of all continuous functions on a compact
Hausdorff space with the *-operation complex
conjugation (under isometric imbedding).

After a decade of mystery the noncommutative
case of Gelfand and Naimak’s query received its
answer: the axiom “l+4x*x has an inverse” can
be omitted in the noncommutative case as well
The key lemma was discovered independently and
nearly simultaneously by Fukamiya, and Kelley
and Vaught. The Kelley-Vaught version is extre-
mely brief and elegant and can be reproduced
here. One has to show that, if x and y are posi-
tive elements in a B*-algebra, the same is true

of x+y. Write x| =a, llyll=8 Then jia
—x |l <a, I B—y i «B whence || (a+f—x+
I <at+p.

2. Derivations

Two apparently unrelated results stimulated
some recent research on derivations in Banach
algebras.

In quantum mechanics one encounters unfoun-
ded operators satisfying AB—BA=I. Can this
equation be satisfied with bounded operators?
Wielandt proved that the answer is “No”. Silov
proved the following theorem. Let A be a Banach
algebra of continuous functions on the unit inte-
rval. Suppose that A contains all n-fold differe-
ntiable functions. Then for some n, A contains
all n-fold differentiable functions. We are at the
moment concerned with the corollary that the
algebra of all infinitely differentiable functions
cannot be normed o form a Banach algebra.

The conjecture based on these two results is
the following: if x,y are elements in a Banach
algebra such that xy-—yx commutes with x, then
Xy~yx is a generalized nilpotent. In the finite-
dimensional case this is a well-known theorem of
Jacobson. After a variety of partial results had
been obtained, Kleinicke proved the conjecturc.
We introduce the inner derivation a—a’=ax—xa.
Our hypothesis states that y''=0, A simple in-
duction based on Leibnitz’s formula shows that
O®=n!(yD" If we write K for the norm
of the bounded operator a—»a’, we then have
Byt <K=l y |l */n!. It follows that vy’ is a
generalized nilpotent element. From this result it
is easy to proceed to the following theorem: Any
continuous derivation of a commutative Banach
algebra maps it onto its radical

3. W#-algebra

We digress from the principal topic of W*-al-
gebra to quote an example of a B*-algebra. We
have already observed that the bounded lincar
operators of a Bamach space into itself form a
Banach algebra. In a Hilbert space H this normed
algebra B(H) admits another important operation,
the adjoint: that is, (Tx,y)=(xT*y), because



of “Riesz Representation Theorem” and definition
of adjoint operators. Then the involution operation
T—-T* has the following properties:

(1) T**=T

(2) (S+T)*=8*4T*

(3 (ATH*=AT*

@) (BTH*=T*8*

G) IT*TH=1THe®

(6) A+T*T) € B(H), where I is the identity
operator. Thus B(H) is a B*-algebra.

The typical neighborhood of O for the weak
topology on B(H) is obtained by specifying a
rositive ¢, a finite set of elements x,, v; in H
and taking all TeB(H) with (T, v.)|<e.

A W#*-algebra is a weakly closed B*-algebra.
Murray and Von Neumann made immense progress
in the study of W*-algebras. An excellent sum-
mary of the work of Murray and Von Neumann
is given by Naimark. The W#*-algebra plays a
vital role in studying group representations, espe-
cially infinite-dimensiona! representations.

4. Group algebras.

Let (X,S, 1) be a measure space. If p>1, we
shall denote by L,(X) the class of all measurable
functions f for which |} f # is integrable with norm
Wl =CE pde)/.

L,(XD is a Banach space. Let G be a locally
compact group. In every locally compact group G
there exists at least one regular Haar measure.

L'(G) becomes a Banach algebra with multip-
lication (f«g) CXD=£ f(xyde (Y")d#CY)=§; f(vDg
(y~ix)du(y), which is called the convolution.

Theorem 6: LW(G) is commutative if and only
if G is commutative.

Theorem 7: L'(G) has an identity if and only
if G is discrete. This L!(G) is the algebra to
which the expression “group algebra” is usually
applied. The theory of commutative group slgebras
has been extremely well developed with the help
of character groups. The treatise of Loomis in
“Introduction to abstract harmonic analysis” gives
a self-contained treatment of the algebra L!'(G)
for abelian G and the elementary theory for non-

abelian G. Naimark’s “Normed rings” and Hewitt
and Ross’s “Abstract Harmonic analysis I” contain
a complete discussion of Banach algebra, including
recent developments, as well as a text book
treatment of those parts of functional analysis
relevant to the theory of Banach algebra
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