A NOTE ON TENSOR PRODUCT OF TOPOLOGICAL LINEAR SPACES

Young-Koan Kwon

INTRODUCTION

The main purpose of the present paper is to describe several properties of the tensor product of two topological linear spaces.

Suppose that E and F are locally convex spaces. Then $E\otimes F$ with the projective tensor product topology(cf. Chap. 2 for definiton) is a Hausdorff locally convex space. If further E and F are metrizable barrelled spaces, then so is $E\otimes F$.

 $E \otimes F$ can be given the topology of bi-equicontinuous convergence, which is weaker than the projective tensor product topology. With this topology, $E \otimes F$ is also a Hausdorff space.

In Chap. 1 we list some basic notation and preliminary results concerning algebraic tensor product of linear spaces and some properties of a linear topological space, which will be needed for the later development.

In Chap. 2, 3 we describe some properties of tensor product of two topological linear spaces.

CHAP. 1 NOTATIONS AND PRELIMINARIES

E's and F's are linear spaces over the same scalar field K.

Then the following is a well known result: Let $E=\Sigma_i E_i$ (direct) and $F=\Sigma_j F_j$ (direct). Then the cannonical mapping of $E_i \otimes F_j$ into $E \otimes F$ is an isomorphism, for each (i, j). Furthermore if we identify $E_i \otimes F_j$ with its image under the above cannonical isomorphism, then we have

 $\mathbf{E} \otimes \mathbf{F} = \sum_{i,j} \mathbf{E}_i \otimes \mathbf{E}_j (\text{direct}).$

Suppose that (ξ_{λ}) and (η_{μ}) are bases of E and F respectively. Then $E = \sum_{\lambda} K \xi_{\lambda}$ (direct) and $F = \Sigma K \eta_{\mu}$ (direct), whence we get

33

 $\mathbb{E} \otimes \mathbb{F} = \underset{\lambda,\mu}{\sum} \mathbb{K} \left(\xi_{\lambda} \otimes \eta_{\mu} \right) \text{ (direct).}$

Thus $(\xi_{\lambda} \otimes \eta_{\mu})$ forms a basis for $E \otimes F$.

Suppose that A and B are non-void convex. subsets of a linear topological space E and that the interior of A is non-void. Then Separation Theorem asserts that there is a continuous linearfunctional on E separating A and B iff B is disjoint from the interior of A.

Suppose that E is a locally convex linear topological space, and that A and B are non-void disjoint convex subsets of E. Then there is a continuous linear functional strongly separating A and B iff O is not a member of the closure of B-A.

Let (E, \mathcal{F}) be a locally convex linear topological space.

If A is convex and \mathscr{T} -closed in E, and if x is. an element which is not in A, then there exists a \mathscr{T} -continuous linear functional f strongly separating A and $\{x\}$ since x-A, \mathscr{T} -closed set in E, does not contain zero.

Since f is weakly continuous, no net in A canconverge weakly to x, whence A is $w(E, E^*)$ closed.

Since \mathscr{T} is stronger than $w(E, E^*)$ -topology, a convex subset of a locally convex space (E, \mathscr{T}) is \mathscr{T} -closed iff it is $w(E, E^*)$ -closed.

- 8 -

CHAP. 2 PROJECTIVE TOPOLOGICAL TENSOR PRODUCT

Suppose that E and E are linear spaces with algebraic duals E' and F' respectively. For $x \in E$ and $y \in F$, let's define $x \otimes y$ by $x \otimes y(x', y') = \langle x, x' \rangle \langle y, y' \rangle$ for every $(x', y') \in E' \times F'$. Then clearly $x \otimes y$ is a bilinear form on $E' \times F'$.

Let $E \otimes F$ be the linear span of $k(E \times F)$ where *b* is the mapping of $E \times F$ into B(E', F'), the space of all bilinear forms on $E' \times F'$, and $k(x, y) = x \otimes y$.

PROPOSITION 2.1.

The space of all linear forms on $E\otimes F$ is isomorphic to the space of all bilinear forms $E \times F$.

Proof. Define π : $(E\otimes F) \rightarrow B(E, F)$ by $\pi(f) = f \cdot k$ for all $f \in (E \otimes F)'$. Clearly it suffices to show that π is bijective. Let $g \in B(E, F)$. Define $f: E \otimes F \rightarrow K$ by $f(x \otimes y) = g(x, y)$ and

 $f(\sum_{i} \mathbf{x}_{i} \otimes \mathbf{y}_{i}) = \sum_{i} g(\mathbf{x}_{i}, \mathbf{y}_{i}).$ Suppose that $\sum_{i=1}^{n} \mathbf{x}_{i} \otimes \mathbf{y}_{i}$ =0 and that $\mathbf{x}_{i} = \sum_{\lambda} a_{i\lambda} \boldsymbol{\xi}_{\lambda}$ and $\mathbf{y}_{i} = \sum_{\mu} b_{i\mu} \eta_{\mu}$ where $(\boldsymbol{\xi}_{\lambda})$ and (η_{μ}) are bases for E and F respectively. Then $\sum_{i=1}^{n} \mathbf{x}_{i} \otimes \mathbf{y}_{i} = \sum_{i=1}^{n} \sum_{\lambda,\mu} a_{i\lambda} b_{i\mu} \boldsymbol{\xi}_{\lambda} \otimes \eta_{\mu} = 0.$

Since $(\xi_{\lambda} \otimes \eta_{\mu})$ is a basis for $E \otimes F$, $\sum_{i=1}^{n} a_{i\lambda} b_{i\mu} = 0$ for each (λ, η) . On the other hand

$$\begin{split} \tilde{\sum}_{i=1}^{\tilde{\Sigma}} g(x_i, y_i) &= \tilde{\sum}_{i=1}^{\tilde{\Sigma}} \left[\sum_{\lambda, \mu} a_{i\lambda} b_{i\mu} g(\xi_{\lambda}, \eta_{\mu}) \right] \\ &= \sum_{\lambda, \mu} \left(\sum_{i=1}^{n} a_{i\lambda} b_{i\mu} \right) g(\xi_{\lambda}, \eta_{\mu}) = 0 \end{split}$$

Thus the mapping f is well defined. By the definition of $f, g=f \circ k=\pi(f)$. If $f \circ k=0$, then f = 0 on $k(E \times F)$ and so is on $E \otimes F$. Thus the assertion follows.

PROPOSITION 2.2. If G is a third linear space, the space of all linear mappings of $E\otimes F$ into G is isomorphic to the space of all bilinear mappings of $E \times F$ into G.

Proof. Let's designate by $L(E\otimes F; G)$ and L (E, F; G) the space of all linear mappings of $E\otimes F$ to G and the space of all bilinear mappings of $E \times F$ into G respectively.

Define $\pi: L(E, F; G) \to L(E \otimes F; G)$ by $\pi(f)$ $(x \otimes y) = f(x, y)$. Then the remaining proofs are quite the same with the previous ones.

Suppose hereforth in this section that E and F are locally convex topological linear spaces.

PROPOSITION 2.3. There is one and only one locally convex topology for $E \otimes F$ such that, for every locally convex space G, the space of all continuous linear mappings of $E \otimes F$ into G corresponds to the space of all continuous bilinear mappings of $E \times F$ into G, that is, the isomorphism in (Prop. 2. 2.) preserves continuity.

Proof. Let \mathscr{U} and \mathscr{V} be local bases for E and F respectively, and let \mathscr{T} be the topology for $E\otimes F$ having as a local base the convex circled extensions of the sets $U\otimes V = \{x\otimes y : x \in U, y \in V\}$ as U and V run through \mathscr{U} and \mathscr{V} respectively.

Then the following statesments are immediate: 1) each element of \mathcal{T} is convex, circled and radial at 0,

(2) $U_1 \otimes V_1 \cap U_2 \otimes V_2 \supset (U_1 \cap U_2) \otimes (V_1 \cap V_2)$,

(3) for all non-zero scalar a, the convex circled extension of $a(U\otimes V)$ is again an element of \mathcal{T} . Thus \mathcal{T} is a locally convex vector topology for $E\otimes F$.

Suppose that f is a continuous bilinear mapping of $E \times F$ into a third locally convex space G. Then there exist U and V neighborhoods of 0 in E and F resp. such that $f(U, V) \subset W$ where W is a neighborhood of 0 in G. Then $\pi(f)(U \otimes V) = f(U, V) \subset W$. This shows the continuity of $\pi(f)$. The converse is also immediate.

Let \mathscr{T}' be another locally convex topology for $E\otimes F$ winth the above property.

Taking $G = (E \otimes F, \mathcal{T}')$, we get that \mathcal{T}' is finer than \mathcal{T} .

Again exchanging the role of \mathscr{T} and \mathscr{T}' , we get the uniqueness of such a topology.

The algebraic tensor product $E \otimes F$, equipped with the above topology is called the "projective tensor product" and will be denoted by $E \otimes_1 F$.

· 9 -

Vol.3, No.1, 1966. 10

Considering the above proposition, we get the following immediately.

PROPCSITION 2.4. The topology of $E \otimes_1 F$ is the strongest locally convex topology for which the cannonical bilinear mapping of $E \times F$ onto $E \otimes_1 F$ is continuous.

PROPOSITION 2.5. If E and F are Hausdorff spaces, then so is $E \bigotimes_1 F$.

Proof. Let z^* be a non-zero element of $E\otimes_1 F$. Then $z^* = \sum_{i=1}^n x_i \otimes y_i$ for $x_i \in E$ and $y_i \in F$. Without less of generality we may assume that $\{x_i\}$ and $\{y_i\}$ are linear independent sets in E and F resp. Let V be a circed neighborhood of 0 in F such that $y_1 \notin V$. If y_1 belongs to the closure of $s(y_1)_{2 \le i \le m}$ the span of $\{y_i\}$ $(i=2, \dots, n)$, then there exist scalars a_i 's such that $\sum_{i=2}^n a_i y_i$ belongs to $y_1 +$ V. This contradicts to the linear independence of the set $\{y_i\}$. Hence 0 does not belong to the closure of $y_1 - s(y_1)_{2 \le i \le n}$. Then by Separation Theorem there exists a continuous linear functional g strongly separating $\{y_1\}$ and $s\{y_i\}$, that is, $|g(y_1)| > \sup\{|g(y)|\}$ $y \in s(y_i)$

We may assume that $g(y_i) > 1$ and then $g(y_i) = 0$ $(2 \le i \le n)$.

Similarly we can select a continuous linear functional f on E such that $f(x_1) > 1$.

f we set $U = \{x \in E : |f(x)| \le 1\}$ and $V = \{y \in F : |g(y)| \le 1\}$, then $|z(f, g)| \le 1$ for all $z \in U \otimes V$ and $|z^*(f, g)| > 1$.

Let's denote by $E\otimes_1 F$ the completion of $E\otimes F$ with the projective tensor product topology.

PROPOSITION 2. 6. If E and F are metrizable, then $E \bigotimes_1 F$ is a Fréchet space. If E and F are metrizable barrelled spaces, then so is $E \bigotimes_1 F$.

Proof. Since E and F are metrizable, there exist \mathscr{U} and \mathscr{V} countable local bases for E and F resp. Then clearly $\{U \otimes V : U \in \mathscr{U}, V \in \mathscr{V}\}$ is countable, whence $E \otimes_1 F$ is metrizable. Thus its completion is a Fréchet space.

Let's show the latter assertion.

A locally convex space E is a barrelled space iff each $w(E^*, E)$ -bounded subset of the adjoint E^* is equi-continuous. By (PROPOSITION 2.3) the space of all continuous bilinear forms on $E \times F$ is isomorphic to the space of all continuous linear forms on $E \bigotimes_1 F$.

Hence it suffices to show that every pointwise bounded family of continuous bilinear forms on $E \times F$ is equi-continuous.

Let $\{f_i:i\in I\}$ be the family. For each closed convex circled neighborhood W of 0 in the scalars and for each element x of E, $W_{xi} = \{y: f_i(x, y) \in$ W} is a barrel in F for any i of I. Whence $\{y; f_i(x, y) \in W, \exists^v i \in I\}$ is closed, convex and circled, Since $\{f_i: i\in I\}$ is pointwise bounded, given $(x, y) \in E \times F$ there exists $k_{xi} > 0$ such that $\{f_i: i\in I\} \subset k_{xi} \{f: |f(x, y)| \le 1\}$. Let y be any element of F and let r be a positive real number such that $r k_{xi} \in W$.

Then for each element *i* of I, $|f_i(x, ry)| = r |f_i(x, y)| \le rk_{x^*}$

Since W is circled, this means that $\{y; f_i(x, y) \in W \exists y : i \in I$ is a barrel in F, whence if $y_n \rightarrow 0$, $\{f_i(x, y_n): i \in I, n=1, 2, \cdots\}$ is bounded. Therefore $\{x: f_i (x, y_n) \in W, \exists y : i \in I, n=1, 2, \cdots\}$ is radial at 0, and it follows that it is barrel in E.

If $x_n \rightarrow 0$, $\{f_i(x_n, y_n): i \in I, n=1, 2, \dots\}$ is bounded. Thus the assertion follows.

CHAP. 3 TOPOLOGICAL TENSOR PRODUCT OF BI-EQUICONTINUOUS CONVERGENCE

Suppose that E and F are locally convex Hausdorff spaces with adjoints E^* and F^* resp.

For each $x \in E$ and $y \in F$, the bilinear functional $x \otimes y$ on $E' \times F'$ defines by restriction a bilinear functional on $E^* \times F^*$, which is separately continuous when E^* and F^* have their w*-topology.

On the space of all separately continuous bili-

-10-

near functionals on $E^* \times F^*$, the topology of uniform convergence on products of equi-continuous subsets of E^* and E^* is a vector topology.

The relative topology for $E \otimes F$ is called the "topology of bi-equicontinuous convergence" and the tensor product space equipped with this topology will be denoted by $E \otimes_2 F$.

PROPOSITION 3.1. The topology of bi-equicontinuous convergence is the topology of uniform convergence on the sets $U^{\circ} \otimes V^{\circ}$, as U and V run through local bases for E and F resp.

Proof. Let W be a neighborhood of 0 in $E\otimes_2$ F. Then there exist A and B equicontinuous subsets of E* and F* resp. such that

 $W = \{x \otimes y : | \langle x, A \rangle \langle y, B \rangle | \leq 1\}$. Since A and B are equicontinuous, there exist U and V elements of local bases for E and F resp. such that $A \subset U^{\circ}$ and $B \subset V^{\circ}$. Hence $A \otimes B \subset U^{\circ} \otimes V^{\circ}$.

Thus W is a neighborhood of 0 in the topology of uniform convergence on the sets $U^{\circ} \otimes V^{\circ}$.

Conversely for all U and V elements of local bases for E and F respectively, U° and V° are equi-continuous in E^* and F^* respectively so that the assertion follows.

PROPOSITION 3. 2. $E \otimes_2 F$ is a Hausdorff space.

Proof. Let $x^* \otimes y^*$ be a non-zero element of $E \otimes_2 F$. Then there exist U and V, closed convex .neighborhoods of 0 in E and F respectively such

that $x^* \notin U$ and $y^* \notin V$.

Let W={ $x \otimes y \in E \otimes_2 F$: $|\langle x, U^\circ \rangle | \leq 1$ }. Then $x^* \otimes y^* \in W$.

If otherwise, $|\langle x^*, U^\circ \rangle| \leq 1$ or $|\langle y^*, V^\circ \rangle| \leq 1$, say $|\langle x^*, U^\circ \rangle| \leq 1$. Then $x \in U^\circ$, which is identical with U since E is locally convex.

PROPOSITION 3. 3. The topology of bi-equicontinuous convergence is weaker than the projective tensor product topology.

Proof. If A and B are equicontinuous subsets in E* and F* resp., then there exist U and V elements of local bases for E and F resp. such that $A \subset U^\circ$ and $B \subset V^\circ$.

Hence $A_{\circ} \supset U^{\circ}_{\circ}$ and $B_{\circ} \supset V^{\circ}_{\circ}$. Since E and F are locally convex, we may assume that U and V are closed and convex.

In this situation we have already found that $U^{\circ} = U$ and $V^{\circ} = V$. Thus $A_{\circ} \supset U$ and $B_{\circ} \supset V$, so that $A_{\circ} \otimes B_{\circ} \supset U \otimes V$. Now the assertion follows.

BIBLIOGRAPHY

- J.L. Kelley and I. Namioka, *Linear Topolngi*cal Spaces, D. Van Nostrand Co., 1963.
- (2) A. E. Taylor, Introduction to Functional Analysis, Wiley Inc., 1963.
- (3) C. Chevalley, Fundamental Concepts of Algebra, Academic Press, 1956.

(Seoul National University)