개의 신내혈류(腎內血流)에 미치는 Isoproterenol의 영향(影響)

Influence of Isoproterenol on Intra-renal Blood Flow in the Dog

  • 박기동 (전남대학교 의과대학 약리학교실)
  • Park, Ki-Dong (Department of Pharmacology, Chonnam University Medical School)
  • 발행 : 1969.12.30

초록

The direct effect of isoproterenol on renal function, when given intravenously, is usually obscured by its potent hypotensive action. To obviate the latter action, isoproterenol was infused directly into one renal artery of the dog, the other kidney serving as a control for the general action. And following results were obtained. In the first series of experiments, the directic action of isoproterenol was ascertained. $1.0\;{\mu}g/kg/min$. reduced on both kidneys the urine flow, clearances of PAH and creatinine, as well as the amount of sodium excreted, but the effect was weaker on the experimental side than on contralateral side. With $0.1\;{\mu}g/kg/min$., two cases among 6 experiments showed marked diuresis, two cases no apparent effect, and another two marked antidiuresis on the experimental kidney, whereas the contralateral kidney exhibited antidiuresis in all cases. Further reducing the dose unmasked the diuretic action on the ,experimental kidney. In another series, the effects of isoproterenol on the blood flow distribution within the kidney and on sodium concentration gradient within the kidney tissue were observed. $0.05\;{\mu}g/kg/min$ isoproterenol markedly increased the medullary plasma flow and slightly increased total renal plasma flow and glomerular filtration rate, along with concomitant increase in the amount of sodium excreted and osmolar clearance, and decrease in reabsorption of free water. Sodium concentration gradient markedly decreased in the experimental kidney, reaching 2/3 of the value observed in the contralateral kidney at the papilla. It is thus concluded that isoproterenol exerts a diuretic action, when infused directly into a renal artery, and the mechanism of the action rests on its hemodynamic action, substantiated as the increase in glomerular filtration and in the medullary blood flow, resulting in washout of hyperosmolality produced by the coutercurrent multiplier system.

키워드