
ROYDEN COMPACTIFICATION OF HARlIlONIC SPACES 

By Young K. Kwon 

Scvcral fundamental rcsults in the theory of Riemann surfaces and Riemannian 

spaccs arc consequenccs of the presheaf property of harmonic functions and have. 
accordingly. been cxtcndcd to the axiomatic selling of Brelot [1]. ln particular. 

Constanti ncscu and Cornea [4] introduced thc counterpart of the Wicner compac­

tification and systcmatically developed the study of bounded harmonic functioos 

in tcrms of this compactification. The purpose of the present paper is to const­
ruc t a Royden- type compactification of a harmonic space and to gcneralize known, 

rcsults to thc axiomatic sct ting. ’ 
1. Let X be a connected. locally compact, non-compact Hausdorff spacc, and 

H a family of real-valu어 continuous functions (harmonic functions) with open 

domains in X 8uch that the c1ass of harrnonic functions 00 an open sct for rns a 
rca l Iincar spacc. The pair ( X ,H ) is a harmonic spacc if the following axioms 

arc mct (Brclot [1]) , 
(A.1) A function u dcfincd on an open set U is harmonic on U i[ and only if 

its rcstrictioD to any open VCU is harmonic on V. A relatively compact open 

sct fJ is called inner regular if for any fEB(ðfJ) , thc class of boundcd functions 

on ðfJ, thcre exists a unique function u[D EB( fJUðfJ) such that u(a = f on ðfJ, 

U{D is harmonic on Q , and u1D는o for f~O. 

(A. 2) X has a base by inner rcgular domains. 
(A.3) The upper envclope of an incrcasingly dircctcd net of harmonic funclions 

on a domain U is either harmonic or +∞ on U. 
lt is known ( Constantinescu.Cornea [2]) that under thc axioms (A.1) and (A. 

2), axiom (A.3) is equivalcnt to the following axiorn , 
(A. 3)‘ Every increasing 5여uence of barmonic functions 00 a domain U either 

cODverges to a harmonic function or diverges to +∞ on U. 

(A.3)’ For any domain U, a compact set KCU, and any fixcd point Xo E K , 

there exists a constant k = k(xo' K , U)~l such that u(x)Sku(xo) for all x E K and 

all nonnegativc harmonic function u on U. 
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ln our discussion we also postulate : 

(A.4) J belongs to thc cJass 1/ of superharmonic functions, that is, 1늘“10 on 

!} for any inncr regular domain Q C X , 

(A. 5) X is first counlablc 
By Constanlinescu .Cornea [2) , (A.5) implics that X has a countablc basc. 

By means of (A. 2) a nd (A.4) it can be shown ( Loeb [히 ) tha t X has a count. 
。。

a blc cxha uslion (Q"l by inner rcguJar domains Q. C X , that is, X = U P. and 
’;, 

Q. C Q.+l for aJJ n능 1. 

2. Let μ bc a Radon mcasure on X with μ(U)> 0 for any nonempty open UC 

X , a nd B( X ) lhe spacc of real.valucd boundcd continuous functions on X 、IIe

considcr a bilinea r ma pping a( . , . ) from B(X) (not nec않sary dcfincd on lhc 

entirc sJX1.ce) i n뼈1 

(ωaι.1) The domain T ( X ) of a( . , . ) forms a rea l vector latlice under the point. 

wise maximum fUg and minimum fn g , and lET( X ) . 

(a.2) a(f. f) ",0 μ-a. e. and the cquality holds on an open UCX only if 

f = const. on U. a( . , ' )IU is bilinea r on T ( X )I U. 

(a.3) a(f.!)",a(fn a .!na) μ，-a. e. on X for a ll real a는O. 

(a.4) For a ny inner reg띠ar domain Q C X a nd f E T ( X ) , 

J oa(f, f)dμ=Joa(f-싸o.J-씨)dμ+ιa(“'rIJ ' u/o)dμ 
For any gET( X ) we write 

A(g )=sup ( J oa(g , g ) dμI Q inner rcgula r doma in) 

Jf A (g ) <∞ it is thc directed Iir마 of the net ( J lJa(g , g)dμ) 0 as Q- ,X. It is easy 

to sce that thc class F ( X ) = (fET(X)I A(f) <∞1 foπns a rcal Unear spacc such 

t hat A (af) = a 2A(f) , A(f+ g ) 2"드Auyr+A(gF- f。r all ι g E F ( X ) a nd real a . 

Se t 

Ao(f， g) =-:삶 (a(f， g )+a(g , f)} dμ 

ïBy virturc of aσ'， g)+a(g.!)=a(f+g.!+g) -a(f.!) -a(g， g)， it is sccn that thc 

l!let (AQCf, g ) }o has lhe directcd limit A(f, g ) , say, such t hat 

A(f, g ) = 웅 (Aσ+g)-Aω-A(g)}. 
(a,5) Let (f.l be a sequencc in F ( X ) such that Iim A(f.) exists and f = B-lim f 

‘ ” ’ 
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on X , that is, ( 시 is uniformly bαmded and converges to f uniformly on compact 

subsets of X. Thcn fEF(X ) and for any gEF(X ), ACf, g) = lim A ( f. , g ). Thus 
.-∞ • 

the spacc F(X) is an inncr product space with lhc in ncr product A( . , .) . We sha ll 
write f =AB - lim ι on X if A(f-ι)→o and f = B - lim f. on X . 

” ’ 
lf X is an orienlablc Riemannian manifold wilh a p∞iti、 c definite mctric 

tensor, and μ thc volumc elcment of X , thcn wc can definc a(ι g)=df^*dg or 

df^션g+Pfg according as the harmonic class H consists of harmonic or p­

harmonic functions. Thcrcfore the corresponding theorics will be special cascs 
of the present discussion (cf. Sario.Nakai 뻐 ， K、von-Sario.Schiff [5)). 

3. The inncr prαluct space F(X ) is callcd thc Royden space associated wilh 
thc harmonic space (X.H) if the subspace F(X )nCo(X ) separates points in X. 

The following propositions a re immediate (cf. Constantinescu-Cornea [3), 

Sario-Nakai [8)). 

PROPOSITION. The Royden Space F( X ) is complele in llze A B-Iopology. 

PROPOSITION. Tlzere cxisls a unique (째 10 Ilωmeomorþhisl’IS) C07/’'poctificalion X ‘ 
of X sucl.‘ Ihal 

(i) X* is a compocl H allsdorff space and conlains X as a71 ope71 dcnse subs“, 
(ii) cvery fEF(X) has a conlinuous exlclIsion 10 X ‘, 
(iii) F(X ) seporales poinls i71 X ‘. 
We shall call X* thc Royden compactification of thc harmonic space (X , H ) 

rclative to A , and β=X‘- X lhe Royden boundary of X. 

The Stone-Weierstrass theorem yiclds 

PROPOSITION. The uniform c/osurc of Ihe Royden spoce F( X ) is eilhcT B( X ‘ ) 

or B, (X ‘ ), where B, (X ‘ )= [fEB(X ‘ ) If (s) =이 ， for some poinl sεX‘-

ln thc latler case such a point s is uruque and belongs to thc Royden bound­

ary β since the class F(X )nCo(X ) separates points in X. lf s exists. it is 

callcd the singular poinl of X ‘-
The singular poinl s erisls if and only if 1종F(X). 

4. Denotc by Fð(X ) lhe AB-closurc of the space F( X ) nCo(X ). Cleary F6(X ) 

ls a lin잉r s뼈spacc of F(X ); we will call it the Roydcn potcntial s뼈space. 
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LEMMA. lJ JEF;CX ) and uEHF= HnF(X). Iheη A(J. u) = O. 

PR∞F. Choose a sequence 띠 in F (X ) nCo(X) such that / = AB- Iim /" on X. 

” 
Since IA(ι u)- o4σ'" ， u)1 든A(J-ι) . A(u) . o4 (λu)= Ii，:n A (J".u) . For any inncr 

regula r Q with Q 그 supp J". A (J". u)= JoaCJ". μ)dμ=0 by (a.4). and the asscr' 

tion follows. 

T he compact sel δ= {xεX시/("，) = 0 for all nonnegative /EFð( X ) } plays an 

imporlant role in lhe study of harmonic functions with finite A- norms. Clearly 

δcß. and sεδ if the singular point s exists. The set δ is called the Royden 
harmonic boundary of X. 

T HEOREM. 1/ Iize Izarmonic boundary δ 0/ X is eηψIy. Ihen Ihe c1ass HF(X) 

C01’si sts 01 cOllslants 01l/Y. 

PROOF. Since δ =fþ. there cxisls a fun ction /EFð(X ) such that f ?:c 1 on X ‘­
Choosc a sequence 까，} in F ( X ) nCo(X) with / = AB- Iim 지 on X 

n 

Let K be an outer rcgular compact subset of X a nd {Q,, } an exhaustion of X 

by inncr rcgular doπa:n ; QII with KζQ" for a ]J n는 1 (cf. 1ιoeb [6)) . Conslruct 

W 11 EF( X ) such tha t w
lI 

is harmonic on Q'I and ω“=J on X - Q • . Since ∞> o4 CJ) 

= A (w,,)+A ( J- w,,) and A(w,,+p)=A (ι".)+A (wn+p -w. )르A (w，，) the sequcnce 

{ ω"l is A-Cauchy on X. Furthermorc it is uniformly bounded on X. and in 

view of (A.3) ’ we may assume that w= B - lim Wn cxists on R. Thus w= AB 
“ 

liJI1 W ” on X and g gHF( X ) . Observe that f and f - tu are ln the class F6(X ) . 

Thus wEFö(X ) nHF( X ) and w= constant by the above lemma. 

If w= O. HF( X ) = (이 as dcsired. In the case ω .. 0 note that 04(1) = 0 and 

1EFð( X ) nHF( X ) . 

Iιet 띠 be such that 띠 is harmonic on íl_-K. ω = 0 00 K. and ω = 10n 
" " ’ 

X -Q". As above we conclude that ω=AB- Iim ωn exists on X and ω is harmo 
” nic on X -K. Since A(，ω，)=AX_K (ω) = lim A X _ K ( W., ω) =0. 띠프o on X. For any 

”→∞ 
uEHF( X ) and n는 1. we have lu l ,;; max lu l +(sup lu l) 띠" on Q" and thercfore 

K X “ 

lu l 드max lu l on X Thus one o아f t따h뼈e nonne탱ga따t디i…ve h따Jaπlfm’mOnIκC ftωun따1 

±μ takes its mininum in X and therefore must 00 constant. 
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T피s completes thc proof of thc theorcm. 

REMARK. The converse of thc theorcm is not truc in gcnera 1. 

5 

5. In the above proof we have shown tha t if δ=tþ， then eithcr HF(X ) = (O}, Or 
HF(X ) = (const. } and 1EFõ(X ). In thc present papcr wc undcrstand that HF(X ) 

=(이 whencver δ= rþ . 

THEOREM. The Jolloωing direcl sum decomposition is valid: 

F(X )=HF( X )(f)Fõ(X ) . 

PROOF. Clcarly it suffices to consider nonncgativc functions JEF( X ). 
For an exhaustion (Q.} of X by inncr rcgular domains, construct u. EF(X ) 

5uch that Un is ha rmonic 00 Q'l aod 1tn=f on X - Dn. Since {z，써 is uniformly 

bounded on X wc may assume that u=B - lim tln exists on X and tl is harmonic 
” 

00 X. By virtue of A(u.)=A (u.+þ)+A(u.-까+p) ， we havc u = AB-l? ”” on 

X and uεHF(X) . Thus J = u+ Cf-u) is a desired dccomposit ion. Sincc Fl x ) n 

HF( X ) = (이 the uniqueness of thc decomposition is trivia1. 

COROLLARY. 1J J는0， thco u2: 0 on X. 

COROLLARY‘ F(X)=Fõ(X ) if δ=rþ. COllver5ely. iJ F(X )=Fõ(X ), Ihell eil /ier 

δ=tþ or (s} occording as the si1tgular poùtl does not or does ex‘51. 

6. Wc now turn to the behavior of HF-functions ocar thc harmonic boundary 
o. The importance of the harmonic boundary lies in that cvery nonconstant 

HF-function takcs its absolutc maximum on it. 

THEOREM. 1J a Junclion “EHF( X ) /ias l/ie proþerly lu l 드M 01l the harmonic 

bøundary δ， Ihen l/ie some inequalily is valid on l /ie enlire space X. TlllIs 1 U 1 s 
tnax J μ1 011 X Jor 011 uEHF( X ). 
a 
PROOF. It suffices to show that u드M on X whenever u드M on δ. By our 

convention HF(X ) = (이 for δ=tþ we can assume tha t δjérþ . 

For any e> O, sct E = IxEX치 u(x) 2:M+다 . Since E is compact and Enδ= rþ， 

there exists a function hEFõ(X ) such that h늘o on X ‘ and h2: 1 on E. For ao 

exhaustioo (Q.} of X by inner rcgular domains Q., construct 까EF(X) such 

that ι is hannonic on Q_ and v_ =h on X -Q_. lt is not difficult to sec that v= ’ n _ -- n 

AB-l띠1 v. exists 00 X aod vEF, ( X ) nHF(X) . Thereforc v三o on X. Since 1E 

’ 
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Jl and M+e-μ +11" 11∞ ι ;;,:0 on X , wc have M +e- ι+IIu ll∞%늘o on Q. for all 

n는 1 a nd therefore u드M’+e+ll .세∞ν • on Q •. On letting "→∞ and thcn E-O we 

obla in the dcsired inequality. 

COROLLARY. Every jiμnctio1l in Jl F(X ) vanisl1es ideutica l/y on X ,"I1enever il 

docs 50 01t tlle lzarm01dc boutzdary. 

7. We havc sccn that every fEF(X) has the uniquc decomposition f = u+ g 

for somc uE JlF(X ) and gEF/ X ), and u늘o whenever f ;;,:O. Since the class 

F(X ) is uniformly dcnse in B,(X* ), it is natural to ask whether the JlF -pr이ec. 

tion f • U C3n be cxtcndcd to B, (Xη. 

We claim 

THEORFM. T I1ere exisls a þosilive bound ed li1zear oþeralor π :B，(δ)-‘JlB(X) 

sz.κ"11101 /.7(f ) / 드m암 /f / an X. Jlere JlB(X) =JlnB(X ). 

P ROOF. Bv Tietzc’ s exlension theorem every fEB，(δ) has a continuous exten. 

sion 1 to x* with max / 1 / =m~x /f / . Choose f.EF(X ) such that max /1-f.1 
X ' Ò “ X' 

< 1/11, and let ". be thc JlF - projection of f. on X. Then max/u.-uμ = max /u. 
“ X' “ ò “ 

1 . 1 
-uml <~+ ~.， . Thereforc there exists a harmonic function uEB(X‘ ) with • II 1tl 

max / ，， - u. / 드 1/1" and such a u is uniqucly dctermined by f. 
". 

Sc l π(1) =μ. Clearly" is well-defined and has thc property J π(fj| Smgx lfl 

on X. Thus ;r is a boundcd linear operator from B，(δ) into Jl B(X ). Assume 

that fEB，(δ) is nonnegative. Given any e> 0 choosc N such that / π(f) -"，， / <e 

on X ‘ for a ll n는N. In particular on δ ι”틀π(f) -e =f-e유 -e and therefore 

11"르 - e on X by the proof of Thcorem 6. Letting n.→∞ and then E-~O wc havc 

the positiveness of the opera tOr π. 

For a fixed point xoEX, consider the functional L" (f) = (nl) (xo) on B，(δ). 

Clearly L" belongs to the topological du띠 B，(δ)' of B，(δ). By the Hahn-Banacb 

theorcm. Lx. has a continuous extension Lx, EB(δy. The Riesz rcpresentation 

thcorem yields a regular (signed) Borel measure μ=μ':r. on δ such that 
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I"U) =가μμ (or a11 fEB(δ) . 

10 particular 

(;rf)애냥，.(끼=J. fdμ for cvcry fE E ,((j) 

On adjusting μ by μ(s)= o if the singular point s cxisls. we oblain 

7 

THEOREM. For a given xoEX tlzere exisls a uu;qνC 110’”’cgative Borcl 1,’reasure 

μ=μ'x~ on δ with μ(s) = 0 such that 

(찌씨)=J. μμ 끼or every fEB，(δ) . 

By virturc of (A.3)" we ha vc ‘ 

THEOR E:.I. Therc ex;sls a nOllnegative functioll P (x. t) 011 Xxδ suclz Ihat 

(i) P (xo• t) = l 011 Ô. ond for eaclz xEX. P (x' t) is Borelmeasurable 011 Ô. 

( i i) P (x. t) is essentially bounded 011 δ• u’‘I/ormly on every c071lpact subset of X. 

(피) (πf)(x)= J. P (x. t)f(t)dμ(t) 011 X for evcry fEB，(δ) . 

We ca11 μ=μ%0 thc lIF-measure on δ ccntercd at xoEX. and P (x. t ) the HF­

kernel on Xxδ. 

COROLLARY. A fUllction u belongs /0 /he class HF( X ) 1/ and only if u(x) = 

j• P (x. t) f (t) dμ(/) 011 X for 잉11IC fEF(X ) . In /his case “=f 011 Ô 
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