ROYDEN COMPACTIFICATION OF HARMONIC SPACES
By Young K. Kwon

Several fundamental results in the theory of Riemann surfaces and Riemannian
spaces are consequences of the presheaf property of harmonic functions and have,
accordingly, been extended to the axiomatic setting of Brelot [1]. In particular,
Constantinescu and Cornea [4] introduced the counterpart of the Wiener compac-
tification and systematically developed the study of bounded harmonic functions
in terms of this compactification. The purpose of the present paper is to const-
ruct a Royden-type compactification of a harmonic space and to generalize known
results to the axiomatic selting. |

1. Let X be a connected, locally compact, non-compact Hausdorff space, and
H a family of real-valued continuous functions (harmonic functions) with open:
domains in X such that the class of harmonic functions on an open set forms a
real linear space. The pair (X, H) is a harmonic space if the following axioms
are met (Brelot [1]):

(A.1) A function # defined on an open set U is harmonic on U if and only if
its restriction to any open VCU is harmonic on V. A relatively compact open
set 2 is called inner regular if for any fEB(d2), the class of bounded functions.
on 32, there exists a unique function Upg €B(2Udfd) such that =,,=f on aQ,
%, is harmonic on Q, and u,=0 for f=0.

(A.2) X has a base by inner regular domains.

(A.3) The upper envelope of an increasingly directed net of harmonic functions:
on a domain U is either harmonic or +co on U.

It is known (Constantinescu-Cornea [2]) that under the axioms (A.1) and (A.
2), axiom (A.3) is equivalent to the following axiom:

(A.3)" Every increasing sequence of harmonic functions on a domain U either
converges to a harmonic function or diverges to oo on U.

(A.3)” For any domain U, a compact set KCU, and any fixed point x, € K,
there exists a constant k=£k(xy, K,U)=1 such that #(x)=ku(x,) for all x € K and
all nonnegative harmonic function # on U.
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In our discussion we also postulate:

(A.4) 1 belongs to the class H of superharmonic functions, that is, 1=#;, on
Q for any inner regular domain Q C X.

(A.5) X is first countable.

By Constantinescu-Cornea [2], (A.5) implies that X has a countable base.
By means of (A.2) and (A.4) it can be shown (Loeb [6]) that X has a count-

able exhaustion {@,} by inner regular domains 2, C X, that is, X= UIQ” and
=

2,C8, ., for all n=1.

n+1

2. Let g be a Radon measure on X with x(U)>0 for any nonempty open UC
X, and B(X) the space of real-valued bounded continuous functions on X. we
consider a bilinear mapping a(-,-) from B(X) (not necessary defined on the

1
entire space) into Lm (X, ) with the following properties (a.1)—(a.5):

(a.1) The domain T'(X) of e(-,+) forms a real vector lattice under the point-
wise maximum fUg and minimum fNg, and 1€T(X).

(a.2) a(f,f)=0 p-a.e. and the equality holds on an open UCX only if
f=const. on U. a(+,+)|U is bilinear on T'(X)|U.

(a.3) a(f, fl)=a(fNea, fNea) p-a.e. on X for all real a=0.

(a.4) For any inner regular domain 2QC X and fe T(X),

faﬂ'( E f)dﬂ=f;ﬂ(f— g, f—ﬂm)d#'f"fga(“m- “fg)dﬂ-

For any g&T(X) we write

A(g)=sup { j;a(g. g) dp| Q inner regular domain]_

If A(g)<oo, it is the directed limit of the net { f;]a(g. g)d,u] o 38 Q-X. It is casy
to see that the class F(X)= {fET(X)|A(f)<eo} forms a real linear space such
1 1 1

that A(af)=a"A(f), A(f+g) 2 <A(f)? +A(g)? forall f,g € F(X) and real a.
Set
Ay f. )= [, laCf.0)+aCe. Prdp.
By virture of a(f, g)+a(g,f)=a(f+g.f+g)—a(f,.f)—a(g, g), it is seen that the
met {A,(/f, g)}a has the directed limit A(f, g), say, such that
ACf 8= 5 AU+2) - A - A@).
(a,5) Let {f,} be a sequence in F(X) such that lim A(f,) exists and f=B-lim f
n n n
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on X, thatis, { f,} is uniformly bounded and converges to S uniformly on compact
subsets of X. Then fEF(X) and for any gEF(X), A(f,g)=lim A(f,,g). Thus
n—oo
the space F(X) is an inner product space with the inner product A(-, ). We shall
write f=AB~-lim f, on X if A(f—f,)—0 and f=B—-lim f, on X.
n n

If X is an orientable Riemannian manifold with a positive definite metric
tensor, and g the volume element of X, then we can define a(f, g)=df \*dg or
dfn*dg+Pfg according as the harmonic class H consists of harmonic or P-
harmonic functions. Therefore the corresponding theories will be special cases
of the present discussion (cf. Sario-Nakai [8], Kwon-Sario-Schiff [5]).

3. The inner product space F(X) is called the Royden space associated with
the harmonic space (X, H) if the subspace F(X)NCp(X) separates points in X.

The following propositions are immediate (cf. Constantinescu-Cornea [3],
Sario-Nakai [8]).

PROPOSITION. The Royden Space F(X) is complete in the AB-topology.

PROPOSITION. There exisis a unigue (up to homeomorphisms) compactificaiion X*
of X such that

(i) X* is a compact Hausdorff space and contains X as an open dense subset,
(ii) every fEF(X) has a continuous extension to X*,
(iii) F(X) separates poinis in X*.

We shall call X* the Royden compactification of the harmonic space (X, H)
relative to 4, and BA=X*—-X the Royden boundary of X.

The Stone-Weierstrass theorem yields:

PROPOSITION. The uniform closure of the Royden space F(X) is either B(X*)
or B, (X*), where B, (X*)={fEB(X*)|f(s)=0}, for some point sEX*,

In the latter case such a point s is unique and belongs to the Royden bound-
ary S since the class F(X)NCy(X) separates points in X. If s exists, it is
called the singular point of X*.

The singular point s exists if and only if 1&EF(X).

4. Denote by F;(X) the AB-closure of the space F(X)NC,(X). Cleary F;(X)
is a linear subspace of F(X); we will call it the Royden potential subspace.
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LEMMA. If fEFy(X) and u€HF=HNF(X), then A(f, u)=0.

PROOF. Choose a sequence {f,} in F(X)NCy(X) such that f=AB-li:n f, on X.
Since |A(S, u)—A(fn.u)]géA(f—fn)-A(u). A(S, u)=1i'1!'n A(f,w). For any inner

regular 2 with @ D supp f,, A(f, u)ZIQa(fn. uw)dp=0 by (a,4), and the asser-
tion follows.
The compact set d= {x&X*|f(x)=0 for all nonnegative fEF #(XD} plays an

important role in the study of harmonic functions with finite A-norms. Clearly
0CpS, and s&0 if the singular point s exists. The set J is called the Royden
harmonic boundary of X.

THEOREM. If the harmonic boundary 0 of X is empty, then the class HF(X)
consists of constants only.

PROOF. Since d=¢, there exists a function fEF 3(X) such that f=1 on X*,
Choose a sequence {f,} in F(X)NCy(X) with f=AB~-lim f, on X.

Let K be an outer regular compact subset of X andn{Q"} an exhaustion of X
by inner regular doma'n; 2, with KCQ, for all =1 (cf. Loeb [6]). Construct
w, EF(X) such that w, is harmonic on Qn and w,= fonX —.Qn. Since o> A(f)
=A (w,)+A(f—w,) and A(w"+p)=A (w,)+A (w”+p~w”)2A (w,) the sequence
{w,} is A-Cauchy on X. Furthermore it is uniformly bounded on X, and in
view of (A4.3)” we may assume that w=B-lim w, exists on R. Thus w=AB
—lim w, on X and w EHF(X). Observe that ;and f-w are in the class F.,(X).
Th':.ts wEF;X)NHF(X) and w=constant by the above lemma.

If w=0, HF(X)={0} as desired. In the case w # 0 note that A(1)=0 and
1EF(X)NHF(X).

Let w, be such that w, is harmonic on 2,—K, w,=0 on K, and w,=1 on
X—0Q,. As above we conclude that mzAB—]iﬂm w, exists on X and w is harmo-
nic on X—K. Since A(@)=A4y_;(w) :'!i_r.EOAX_K(w”,w):O, @w=0 on X. For any
ucHF(X) and n=1, we have }uISmf?xluI—!—(s‘L!:{plul) @, on 2 and therefore
Iulsmix |z| on X. Thus one of the nonnegative harmonic functions m}?x | 2]

+#% takes its mininum in X and therefore must be constant.
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This completes the proof of the theorem.
REMARK. The converse of the theorem is not true in general.

5. In the above proof we have shown that if §=¢, then either HF(X)={0},or
HF(X)={const.} and 1€F;(X). In the present paper we understand that HF(X)
={0} whenever d=gp.

THEOREM. The following direc! sum decomposition is valid:

F(X)=HF(X)®F;(X).

PROOF. Clearly it suffices to consider nonnegative functions fEF(X).

For an exhaustion {2} of X by inner regular domains, construct #,EF(X)
such that u, is harmonic on 2, and »,=f on X- Q,. Since {,} is uniformly
bounded on X we may assume that #=B-lim #, exists on X and # is harmonic

n
on X. By virtue of A(w,)=A(u,. ,)+A(u,~u,,,)., we have y=AB-lim u, on
n
X and u€HF(X). Thus f=u+( f—u) is a desired decemposition. Since Fi (XN
HF(X)={0} the uniqueness of the decomposition is trivial.

COROLLARY. If f=0, then #=0 on X.
COROLLARY. F(X)=FyX) if 0=¢. Conversely, if F(X)=F4;X), then either
d=0 or (s} according as the singular point does not or does exist.

6. We now turn to the behavior of HF-functions near the harmonic boundary
J. The importance of the harmonic boundary lies in that every nonconstant
HF-function takes its absolute maximum on it.

THEOREM. If a function u€HF(X) has the property |u|<M on the harmonic
boundary 0, then the same inequality is valid on the entire space X. Thus |u|=
mdaxluf on X for all wEHF(X).

PROOF. It suffices to show that =M on X whenever <M on d. By our
convention HF(X)={0} for §=¢ we can assume that J=¢.

For any >0, set E= (xEX*|u(x)=M-+¢}. Since E is compact and ENJ =0,
there exists a function hEF;(X) such that #=0 on X* and k=1 on E. For an
exhaustion {2} of X by inner regular domains Q,, construct »,€F(X) such
that #, is harmonic on 2, and »,=k on X-Q,. It is not difficult to see that v=

AB-lim v, exists on X and v€F; (X)NHF(X). Therefore v=0 on X. Since 1€
n
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H and M+e—u+|ul k=0 on X, we have M+e—u+tllulleov,=0 on 2, for all

n=1 and therefore <M e+l v, on 2. On letting #—co and then ¢—0 we

obtain the desired inequality.
COROLLARY. Every function in HF(X) vanishes identically on X whencver it
does so on the harmonic boundary.

7. We have seen that every fEF(X) has the unique decomposition f=u+g
for some y€HF(X) and gEF(X), and #=0 whenever f=0. Since the class

F(X) is uniformly dense in B (X*), it is natural to ask whether the HF-projec-
tion f—« can be extended to B, (X%).

We claim:

THEORFM. There exists a positive bounded linear operator w:B(0)—HB(X)
such that ]:r(f)[i:ma}x]ﬂ on X. Here HB(X)=HNB(X).

PROOF. By Tietze’s extension theorem every fEB(J) has a continuous exten-
sion f' to X* with max | f|=max|f|. Choose f,EF(X) such that max |f—f,
<1/n, and let u, be the HF-projection of Jf, on X. Then m%{"“n‘“ml =m§\xlu,

-u,,,f<—i-+%. Therefore there exists a harmonic function #€B(X*) with

n}z}x |u—u, |=1/n, and such a % is uniquely determined by f.
Set z(f)=u. Clearly z is well-defined and has the property I:r(f)l-.Smg.x[f]

on X. Thus 7 is a bounded linear operator from B(d) into HB(X). Assume
that f€B,(J) is nonnegative. Given any £>0 choose N such that |z(f)—u,| <e
on X* for all n=N. In particular on § u,=z(f)—&=f—e=—¢ and therefore
#,=—¢c on X by the proof of Theorem 6. Letting #-»co and then é—0 we have
the positiveness of the operator .

For a fixed point x,€X, consider the functional L, (f)=(zf)(x:) on B(d).

Clearly L, belongs to the topological dual By(@)" of B,(d). By the Hahn-Banach
theorem, L_ has a continuous extension I,‘EB(:T Y. The Riesz representation

theorem yields a regular (signed) Borel measure =g, on 0 such that
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L,(N=[3fdp  for all FEB(@.
In particular
@A Y=L, (= fa fdp for every fER (J).
On adjusting g by p(s)=o if the singular point s exists, we obtain:
THEOREM. For a given x,€X there exisls a uniquc ronnegative Borel measure

g=pg, on d with p(s)=0 such that
@NG)=[ fdu  for every fEB,@).

By virture of (A.3)” we have:

THEOREM. There exists a nonnegative function P(x,t) on X X7 such that
(i) P(xy,1)=1 on G, and for each x€X, P(x,1) is Borel measurable on 7,

(ii) P(x,1) is essentially bounded on &, uniformly on every compact subset of X,
(i) (=@ = PG.DFOApE) on X for every FEB,D),

We call g=pu, the HF-measure on ¢ centered at x,€X, and P(x,t) the HF-
kernel on X%d.

COROLLARY. A function u belongs to the class HF(X) if and only if u(x)=
! j; P(x,t) f(1) dp(t) on X for some fEF(X). In this case u=f on 4.
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