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1. Introduction. An action is a continuous function α: TXX • X where T is a 

(topologica l) semigroup. X is a Hausdorff space. and a (th. x)=a (tl' a (t2' x)) . 

We shall also assume that T and X are compact and that α is onto. We write 

Ix for a (t • . <) and AB for (lx IIEA. xEB). The action a induccs a c10scd quasi. 

order (( x.y)I TxCTy) on X (2) M (a) is the set of all maximal elements of X 

under this quasi-order. The a -orbit of a point x in X is Tx. An action is callcd 

unilary if xETx for all xEX. Here we shall bc conccrned with unitary actions. 

Thc reader is referred to (4] . (5] . (9] . and (1미 for information concerning the 

gencral theory of semigroups. 

A multi.va lued function F from X to Y associates with each xEX a non empty 

subsct F (x) of Y. F is continuous if and only if (x. l is a nct convergcncc to 

X implics F (x,,) converges to F(x) (히 and F (x) is c10sed for all xEX. Associιtcd 

with a ny action a there are two multivalucd functions F: T • X defined by 

F(t)=I(M(α))* (where ‘ incticates topological cJosurc) and G ‘ X • X defincd 

by G( X )=T x. These functions arc continuous (9] . Here we a rc intereslcd in 

the conversc, i. c .. given F and G when is it possiblc to construct a uni tary 

aclion a such that a (T X (xl )=G(x) for all xEX. We shall give conditions on F 

and G which enable us to construct a disjoint unitary action of T on X. Using 

this construction wc shall give a new proof of a theorcm due to Stadtlandcr 

(6] . The methods used here are very similar to those of (2] and 떼 • 

The reader is referrcd to (7] for a more complcte treatment of multivalucd 

functions 

2. Main Theorem. Anaw-homomorphism hetween two actions a1 : T 1X X ,- X , 
and az : T 2X X z-Xz is a pair (g ,f) where g is a continuous homomorphism of 

T 1 onto T z• f is a continuous function of X 1 onto Xz and fa1(t. x) = a zCg (t). 

f(x)) for a1l IET and a11 xEX. An action a is disjoinl if and only if (Tx lxEM(a ) ) 

is pairwise .disjoint. The following proposition enables us to restrict our attention 

to disjoint actions. 
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PROPOSITION 1. If a: T X X - .X is a ullitary actioJl. theJl tlzere is a COIIψact .. 

Hausdorff spαce Y and on actiOJl β:TxY - .y such Ilral β is disjoi씨 . M(β) is 
c/osed and a '.5 an ato-}zomomorþhκ imoge 01 β. 

This pr때osition is very similar to Thcorcm 5 of [2J and a slight mα:lification 

01 the prool to that theorem will provc this pr때osition . 

Let X be a compact Hausdorll space and K be a continuous multivalu어 function 
of X onto X. Then P (K )= {(x . .v) I K(x)ζK(y)J is a closed quasi-ordcr on X and let 
M(K ) be thc sct 01 maximal elcments of X undcr P(K ). A disjoint unitary orbit fun 

ction on X is a continuous mu1tivalued function G of X onto X such that xEG(x) 

for all xEX. if xεG(y) then G(x) is contain여 in G(y) and {G(b)lbEM(G)J is 

a pairwise disjoint collection 01 subscts of X. Let T bc a comαlct scmigroup. A T ­

sclector for a disjoint unitary orbit function G on X is a coniinuous multivalucd 
function F:T• X such that for bEM(G). thc lunction f .: T • G(b) dcfincd by 
f. (t) =F(t) nG(b) is a Jcft.mult iplicativc single.valucd onto lunction and if xE F(t) 

nG(b). bEM(G). then G(b) nF(Tt ) = G(x). (A left.multiplicativc function "on a 

scmigroup T is a funclion such that {(I. t') Ih(l) =" (t’)} is a left congrucnce 01 T. ) 

Thc lollowing remark indicatcs thc motivation lor thc above delinition. 

REMARK 2. Let a:T X X • X be a disjoint. unitaryaction. Then G:X• X delincd 

by G(x)= Tx is a disjoint. uni tary orbit function. If B=B*ζM(a) . TB = X and 

card G(x) nB= l lor xEM(a). then F:T• X dcfin여 by F(t) =tB is a T-sclcction. 

The pr∞f is routine. 

THEOREM 3. Let X be a compact Hausdorff sþace. G be a disjoint unitary orbit 

funclion 0" X . T be a compact semigroup. muJ let F be a T -selector for G. If 

a ’ T X X-X is defined by a (t.x)= f .ctJ.-1(x)) whcre bEM(G) OI,d xEG(b). Ihen 

a is a disjoi"t ullitary action with a(T X [x} )=G(x) . 

PROOF. Since f. is 10ft mu1tiplicativc lor bEM(G) and (G(b)l bEM(G)} is 

pairwisc disjoint. a is wcll .defincd. 
Ncxt. we shall show that α is continuous. Lct [t,,} bc a nct in T converging to 

t. {x.} be a net in X converging to x. b.EM(G) such that xnEG(bι-1 

M (G) such that xEG(b). let tn’ Ef;,,(xn) • • bc a clustcr point 01 [a(ln’ x.)} and 

lct l' bc a cluster point 01 {tμ . By sclecting subnets we may suppose (.α(ι . x.) ) 

:onvergcs to • and {tμ convcrges to 1'. Sincc F(Tt;)nG(b.)= G(x.). a (l •. x.) 
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=J • .Ct" f;.' (x.,))EG(x.) and thus zEG(x)CG(b). Because a (t •. x.)EF(t.'.’) , zE 

F(II’ )nG(b)= f. (tt') , But x.EF(tμ implies xEF(t') so that a (t, x) =! ,(1t’ ) =z. 

lt is easily shown that α(l l' a(12， x))=a(t， 12 ， x) for 11' 12ET and xEX and that 

a(Tx (x))= G(x) for xEX 

A K -space is a pair (X , K ) whcrc X is a compact metric space and K is a 

continuous multivalued function from X onlo X such that: 
(1) If x EK(y ) , thcn K (x)CK(y) 

(2) lf K (x)= K ( y ) , then x=y 

(3) xEK(x) for a I1 xEX 

(4 ) K (x ) is a mctric arc (homcomorphic 10 [0, 1] or a point) with one cnd. 

point x and onc endpoint in L (K ) = (x EX lx is minimal in P(K)). 

(5) Card (K (x)n L (K ))=l for a Il xEX. 

This definition is different in form to the definition given by Stadtlander [6) 

but the two definitions arc cquivalen t. 

A thread is a semigroup which is homeomorphic to [α 1] and in which one 

endpoint is ao idcotity and the other is a zero. The foIlowing corollary coo­

cernirg thread actions can bc found in [6]. Thc proof prescnted there is different. 

COROLLARY 4. Lel T be a 'hread and (X , K) be a K - space. Then Ihere is a 

unitary action T 0깨 X wilh OX = L (K ) where 0 is Ihe zero of T , 

PROOF. Define P:X• L(K) by p(x) = L( K ) nK(x) . Then p is a retraction [9] , 

Carruth [3] has shown that there is a metric d for X which is convex with 

respect to P (K ) , i. e" K(x)ζK(y)ζK(z) implies d (x, y )sd(x , z). We may also 

assume d is bounded by 1 and T = [0, 1] . Thus, thc function k:M(K)*-T by 

k(b)=d(b ,p(b)) is continuous. 

Lct Y = U (K(b)X (이 I bEM(K)차 • Define G:Y• Y by G(y , b)= K (y)X (b]. lt is 

casil y verified Ihat G is a disjoint unitary orbit function and M (G) = ((b, b)jbE 

M(K)치 . Define F:T • Y by F (t)= ((x ,b)ld(x,P(b))=lk(b)) . By an argument 
similar to the one used in Thcorem 2.6 of 떼 • F is continuous and it is routine 

10 vcriIy that F is a T-selector for G. Let a bc the action givcn by Theorem 1. 

Let 낀 :Y• X be the first projcction. It is a simplc computation to verify that iI 

".cy )=" ,( x ) thcn π，a(t， x)=",a ( I,y) for IET, Thus, therc is ao action β from 

T x X ooto X dciined by β(ι x)=π ，a(t， y) whcrc ",(y)=x [1 , 끽 • 
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