A TABLE OF ELEMENTARY EXTENDED GROUP

By Sang Moon Kim

Introduction

Let E be a group of transformations $\frac{az+b}{cz+d}$ or $\frac{a\bar{z}+b}{c\bar{z}+d}$. Then E contains a normal subgroup G of index two which consists of all the Möbius transformations contained in E. If there is a sequence of distinct elements $\{A_n\}$, $A_n \in E$ (or $A_n \in G$), and a point t contained in the extended complex plane C such that $\lim_{n\to\infty} A_n(z) = t$, then we call t is a limit point of the group E (or G).

Let R be the set of non-limit point of E (or G) then we call R the region of discontinuity of E (or G). If R is not empty then we call E (or G) an extended group (or Kleinian group).

An extended group (or Kleinian group) with at most two limit points is called an elementary extended group (or elementary Kleinian group).

Ford [1], gives a complete table of an elementary Kleinian group, this paper gives a table of elementary extended group.

1. Groups with one limit point

Let G be a Kleinian group with one limit point. Then it is conjugate to one of the following groups which we represent in terms of its generators.

- (1) z+1
- (2) z+1, -z
- (3) z+1, z+p
- (4) z+1, z+p, -z
- (5) z+1, z+i, iz
- (6) z+1, $z+\exp\left(\frac{2}{3}\pi i\right)$, $\exp\left(\frac{2}{3}\pi i\right)z$
- (7) z+i, $z+\exp\left(\frac{1}{6}\pi i\right)$, $\exp\left(\frac{1}{6}\pi i\right)z$,

where p denotes a complex number with non-zero imaginary part and $|p| \ge 1$. One can find this classification in Ford [1].

Let E be an extended group with one limit point. Then it contains a Kleinian group G which has one of the above forms and G has index 2 in E. Hence E

can be written as

$$E = G \cup GU$$

$$az = e^{i\theta}\bar{z} + b$$
, $0 \le \theta < 2\pi$.

Let T be an element in G, then

$$T(z)=K^mz+d;$$

if $K^m=1$, then T(z)=z+d, and we call d the period of the parabolic element T. Let D be the set of periods of all parabolic elements contained in G. Let T_1 and T_2 be two elements in G and let U be an anti-analytic element in E, then

(8)
$$U^2$$
, UT_1UT_2 , UT_1U , and $T_1UT_2U^{-1}$

are contained in G. From the above fact we conclude

(9)
$$e^{i\theta}\overline{D} \subset D$$
, $e^{i\theta}\overline{b} + b \in D$. $-\overline{K}^m b + b \in D$

$$\overline{K}^m = K^l$$
, $e^{i\theta} \overline{K}^m \in D$ and $\overline{K}^m K^n b + \overline{K}^n b \in D$

where m and n are integers.

Let $E=G \cup GU$ and G be generated by z+1. Then by the condition $e^{i\theta}$ $\overline{D} \subset D$, we conclude $\theta=0$ or $\theta=\pi$. Let $\theta=0$ and B(z)=z+a then $BGB^{-1}=G$ and $BUB^{-1}=\overline{z}-\overline{a}+b+a$.

Considering BEB^{-1} , we know that there are two cases b=0 or $b=\frac{1}{2}$ and hence there are two non-conjugate groups;

$$(z+1, \bar{z})$$
 and $(z+1, \bar{z}+\frac{1}{2})$.

In case $\theta = \pi$ we have $-\overline{b} + b \in D$ by (9) and hence b must be a real number. Conjugating by an element of type z+a we obtain b=0. Hence the group E is generated by

$$(z+1, -z).$$

Now G is generated by (2), by calculation similar to the above we have two groups;

$$(z+1, z+p, -\bar{z})$$
 and $(z+1, z+p, -\bar{z}+\frac{1}{2})$.

Let G be generated by (4), (5), (6) or (7), G contains a doubly periodic subgroup, and if we know the parallelograms generated by the subgroup then by the condition $e^{i\theta}\overline{D} \subset D$, we can determine θ and b.

Let $p \neq 0$ be a period of a parabolic element in G; if there is no period q of a parabolic element in G such that

$$nq = \pm p$$
,

where $n \ge 2$ is an integer, then we say p is a minimal period. If p is a minimal period then so is -p, hence we consider these two to be the same minimal periods,

so that there are four minimal periods for a given D. Let us denote the four minimal periods by l, p, q and r.

Let G be generated by z+1 and suppose D satisfies (11),

(11) 1 < |p| = |q| < |r|, where p, q and r are not imaginary.

Then $e^{i\theta}\overline{D}\subset D$ implies $\theta=0$ or $\theta=\pi$. If $\theta=0$ then conjugating by B(z)=z+a,

we have b=0 or $b=\frac{1}{2}$. Hence we have two groups

$$(z+1, z+p, \bar{z})$$
 and $(z+1, z+p, \bar{z}+\frac{1}{2})$.

If $\theta = \pi$, then by $e^{i\theta}\bar{b} + b \in D$, we have $-\bar{b} + b \in D$, and hence b must be a real. We have two cases b = 0 or $b = \frac{1}{2}$, but by a conjugation with B(z) = z + a we can take b = 0 always. Hence E is generated by

$$(z+1, z+p, -\bar{z}).$$

Since the proof is similar in each case, we give only results. Consider the following classifications of minimal periods;

- (10) 1 < |p| < |q| < |r|
- (11) 1 < |p| = |q| < |r|
- (12) $1=|p|<|q|\leq |r|, p=e^{i\alpha}$
- (13) $1 = |p| < |q| = |r|, p = e^{2/6} \pi^i$
- (14) 1 < |p| < |q| = |r|, p=i
- (15) 1 < |p| < |b| = |r|, p = si, $s \neq 0$ is real.

Let G be generated by (3) and let $E=G\cup GU$. We give a table of antianalytic generators of E corresponding to the above table of minimal periods. Periods, U

- (10) do not exist
- (11) \bar{z} , $\bar{z}+12$, $-\bar{z}$
- (12) eiᾱz, eiα+π̄z

(13)
$$\bar{z} + \frac{1}{2}$$
, $e^{i\theta}\bar{z}$ (where $\theta = \frac{k}{6} 2\pi i$, $k=0, 1, \dots, 5$.)

(14)
$$\bar{z} + \frac{1}{2}$$
, $e^{i\theta}\bar{z}$ (where $\theta = \frac{k}{4}2\pi i$, $k = 0, 1, 2, 3.$)

(15)
$$\bar{z}$$
, $\bar{z} + \frac{1}{2} - \bar{z}$.

Let G be generated by (4), then we have the following table of U.

Periods, U.

(10) do not exist

(11)
$$\bar{z}$$
, $\bar{z} + \frac{1}{2}$

(12)
$$\bar{a}$$
, $\bar{a} + \frac{1}{2}(1 + e^{i\alpha})$

(13)
$$\bar{z}$$
, $\bar{z} + \frac{1}{2}$, $e^{i\theta}\bar{z}$, $e^{i\alpha}\bar{z} + (1 + e^{i\theta})$, $0 = \frac{\pi}{3}$ or $\frac{2}{3}\pi$

(14)
$$\bar{z}$$
, $\bar{z} + \frac{1}{2}$, $i\bar{z} + \frac{1}{2}(1+i)$

(15)
$$\bar{z}$$
, $\bar{z} + \frac{1}{2}$, $\bar{z} + \frac{1}{2}si$.

Let G be generated by (5), then U takes two terms: \bar{z} and $i\bar{z} + \frac{1}{2}$, $i\bar{z} + \frac{1}{2}$ (1+i).

Let G be generated by (6), then U takes the two terms \bar{z} and $e^{1/3\pi i}$ \bar{z} . Let G be generated by (7), then U is \bar{z} .

2. Groups with two limit points

Now we consider groups with two limit points; these can be classified into four kinds of groups, see Ford [1]. As before, we represent them by generators:

- (16) Kz
- (17) Kz, K1z
- (18) Kz, K/z
- (19) Kz, K/z, K_1z , K_1/z ,

where $|K| \neq 1$ and $K_1 = \exp(2\pi i/k)$ and k is a positive integer.

Let $E=G \cup GW$ then W has two forms such that

$$W = U = re^{i\theta}\bar{z}$$
 and $W = V = (re^{i\theta}/\bar{z})$

Now consider the following elements of E;

- (20) $U^2 = \rho^2 z$
- (21) $(UT^n)(UT^n) = \rho^2 \overline{K}^m K^n z$ where $T^n = K^n z$.
- (22) $V^2 = e^{2i\theta_z}$
- $(23) VT^nV^{-1} = \overline{K}^{-n}z.$

Let G be generated by (16). By (20) and (21) we have

(24)
$$\rho^2 = K^l$$
 and $K^i \overline{K}^m K^n = K^s$

where l, m, n and s are integers.

Set $K = |K|e^{i\alpha}$, by (24) we have $\alpha = 0$. Let $S = Me^{-1/2i\theta}$ where M > 0, then $SUS^{-1} = V\bar{z}$ and $SGS^{-1} = G$. Hence we can set $\theta = 0$. Consiering $T^{n}U$ we can take V = 1 or $V^{2} = K$. Hence we have two groups.

$$(Kz, \bar{z})$$
 and $(Kz, K^{1/2}\bar{z}), K>0$.

Let us consider V, let $S=V^{1/2}e^{i\alpha}\bar{z}$ then we have $SGS^{-1}=G$ and $SVS^{-1}=e^{i\theta}/\bar{z}$.

By (23) we know that K is positive and real, and by (22) We conclude $\theta=0$ or π . Hence we have the following two groups;

 $(Kz, 1/\bar{z})$ and $(Kz, -1/\bar{z})$.

Repeating similar calculations we have the following results.

Let G be (17); then W takes the following forms;

 \bar{z} , $K^{1/2}\bar{z}$, $1/\bar{z}$ and $-1/\bar{z}$, where K>0.

 \bar{z} , $1/\bar{z}$, $-1/\bar{z}$ and $e^{\pi/k}/\bar{z}$, where $K = |K| e^{\pi i/k}$

Let G be (18), then W takes the forms;

 $z_1, -\bar{z}, K^{1/2}\bar{z}, -K^{1/2}\bar{z}, \text{ where } K>0.$

Let G be as in (19), then W takes the forms;

 $Ve^{i\theta}\bar{z}$, where V=1 or $V=\sqrt{|K|}$

and $\theta=0$, $\theta=\pi$ or $\theta=\pi/k$ and K=|K| $e^{\pi i/k}$ or K=real.

For the classifications of extended groups with no limit point, one can refer to Ford [1], he gives there a simple classification.

Kyungpook University, State University of New York at Stony Brook

REFERENCES

- L. Ford, Automorphic functions, second edition, Chesea publishing company, New York, (1951).
- [2] J. Lehner, A short course in automorphic functions, Holt, Reinhart and Winston, New York, (1965).