NOTE ON HYPERSURFACES WITH (f, g, u, v, λ) - STRUCTURE OF S^{2n+1} ## By U-Hang Ki The odd-dimensional sphere S^{2n+1} has an almost contact structure that is naturally induced from the Kaehler structure of Euclidean space E^{2n+2} . Blair [1], Ludden [1], Okumura [8] and Yano [1], [8] showed that a submanifold of codimension 2 of an almost complex manifold and a hypersurface of an almost contact manifold admit an (f, g, u, v, λ) -structure. Recently Blair, Ludden and Yano [2] proved the following THEOREM. Let M^{2n} be a complete orientable hypersurface of S^{2n+1} of constant scalar curvature. If the (f, g, u, v, λ) -structure induced on M^{2n} satisfies Kf + fK = 0 and $\lambda \neq$ constant where K is the Weingarten map of the embedding, then M^{2n} is S^{2n} or $S^n \times S^n$. In the present paper, we study the hypersurface M^{2n} of S^{2n+1} satisfying $\lambda = \text{constant}$ and Kf + fK = 0. # § 1. Hypersurface of S^{2n+1} Let S^{2n+1} be the natural sphere of dimension 2n+1 in Euclidean space E^{2n+2} . Let $(\phi, \hat{\xi}, \eta, g)$ be the mormal almost contact metric structure induced on S^{2n+1} by the Kaehler structure on E^{2n+2} . That is to say, ϕ is a tensor field of type (1,1), $\hat{\xi}$ is a vector field, η is a 1-form and g is a Riemannian metric on S^{2n+1} satisfying $$(1.1) \begin{cases} \phi^2 = -I + \eta \otimes \xi, \\ \phi \xi = 0, \quad \eta \circ \phi = 0, \\ \eta(\xi) = 1, g(\phi \tilde{X}, g(\phi \tilde{Y}, \phi \tilde{Y}) + \eta(\tilde{X}) \eta(\tilde{Y}) = g(\tilde{X}, \tilde{Y}) \\ [\phi, \phi] + d\eta \otimes \xi = 0, \end{cases}$$ where $[\phi, \phi]$ is the Nijenhuis torsion tensor of ϕ and \tilde{X} and \tilde{Y} are arbitrary vector field on S^{2n+1} Suppose $\pi: M^{2n} \longrightarrow S^{2n+1}$ is an embedding of the orientable manifold M^{2n} in S^{2n+1} . The tensor G defined on M^{2n} by $$G(X,Y)=g(\pi_*X, \pi_*Y)$$ is a Riemannian metric on M^{2n} . Here, π_* denotes the differential of the embedding π . If C is a field of unit normals defined on M^{2n} and \widetilde{V} is the Riemannian connection of g then the Gauss and Weingarten equations can be written as $$(1,2) \begin{cases} \widetilde{\nabla}_{\pi_*X} \ \pi_*Y = \pi_*(\nabla_X Y) + k(X,Y)C, \\ \widetilde{\nabla}_{\pi_*X}C = \pi_*(KX). \end{cases}$$ Then ∇ is the Riemannian connection of G, K is a symmetric tensor of type (0,2) on M^{2n} and $$G(KX,Y)=k(X,Y)$$. If we set $$\phi \pi_* X = \pi_* f X + v(X) C, \quad \xi = \pi_* U + \lambda C,$$ $$\phi C = -BV, \quad u(X) = \eta(\pi_* X),$$ where, f is a tensor field of type (1,1), U and V are vector fields, u,v are 1-forms and λ is a function. Then M^{2n} admits an (f,g,U,V,u,v,λ) -structure [1], [8], that is, $$(1.4) \begin{cases} f^2 = -I + u \otimes U + v \otimes V, \\ u \circ f = \lambda v, \quad v \circ f = -\lambda u \\ fU = -\lambda V, \quad fV = \lambda U, \\ u(U) = v(V) = 1 - \lambda^2, \quad u(V) = v(U) = 0, \\ G(fX, fY) = G(X, Y) - u(X)u(Y) - v(X)v(Y) \end{cases}$$ Differentiating (1.3) covariantly along M^{2n} and taking account of (1.2)~(1.4), we find [2], [8] $$(1.5) (\nabla_X f)Y = G(X,Y)U - u(Y)X - k(X,Y)V + v(Y)KX,$$ $$(1.6) \nabla_X U = -fX - \lambda KX,$$ $$(1.7) \nabla_X V = -\lambda X + fKX$$ $$(1.8) \nabla_X \lambda = v(X) + k(U, X)$$ In the sequel we assume that λ is constant different from 0, ± 1 in the hypersurface M^{2n} . Then, we have from (1,8) (1.9) $$KU = -V$$. ## § 2. Hypersurface with du=0. In this section we assume that in the hypersurface M^{2n} du=0, that is, equivalent to (2.1) $$fK + Kf = 0$$ by virtue of (1,7). From (2,1), we have [2], [6] trace $$K=0$$, by virtue of (1,7). From (2,1), we have [2], [6] trace k=0, (2.2) $$KU = \alpha U + \beta V$$ $KV = \beta U - \alpha V$ Using (1.9), we can see that $\alpha=0, \beta=-1$. So - (2.3) KU = -V, - (2.4) KV = -U. If we apply ∇_X to equation (2.4) use equation (1.6), (1.7) and use the fact $(\nabla_X K)Y = (\nabla_Y K) X$ because of the Codazzi equation, we find that (2.5) $$F(X,Y) - F(KX,KY) = 0$$, where F(X,Y) = G(fX,Y). Replace Y be fY in the equation (2.5) and use (1.4) to obtain $$G(KX, KY) - u(KX)u(KY) - v(KX)v(KY)$$ $$=G(X,Y)-u(X)u(Y)-v(X)v(Y),$$ from this we see that $$K^2 = \frac{2}{1 - \lambda^2} (u \otimes U + v \otimes V) - I,$$ from which, K=0 $(n\geq 2)$. If n=1, then we can see that from the equation of Ganss the scalar curvature is zero and consequently the curvature tensor is zero (cf [6]). THEOREM. If M^{2n} is a complete orientable hypersurface of S^{2n+1} satisfying du=0 and λ is constant different from $0, \pm 1$, then. - (1) M^{2n} is a great sphere S^{2n} $(n \ge 2)$, - (2) M2 is locally Euclidean. Kyungpook University #### BIBLIOGRAPHZ - [1] Blair, D.E. and G.D. Ludden and K. Yano, Induced structure on submanifolds. Ködai Math. Sem. Rep. 22 188-198, (1970). - [2] _____, Hypersurface of an odd-dimensional sphere, to appear in J. of Diff. Geo. - [3] Nomizu, K., On hyper surface satisfying a certain condition on the curvature tensor. Tôhoku Math. J. 20 45-59, (1968), - [4] Okumura, M., certain hypersurfaces of an odd-dimmensional sphere. Tôhoku Math. J. 19 385—395 (1967). - [5] K. Yano, S.S. Eum and U-Hang Ki. On transversal hypersurfaces of an almost contact manifold. to appear in Ködai Math. Sem. Rep. - [6] K. Yano and U-Hang Ki, Submanifolds of codimension 2 in an even-dimensional Euclidean space, to appear in Ködai Math. Sem. Rep. - [7] _____, On quasi-(f, g, u, v, λ)-structures to appear in Ködai Math. Sem. Rep. - [8] K. Yano and M. Okumura, On (f, g, u, v, λ)-structures Ködai Math. Sem. Rep. 22 401—423. (1970). - [9] _____, On normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 in an evendimensional Euclidean space, Kōdai Math. Sem. Rep. 23 17—197(1971).