WELL-CHAINED UNIFORMITIES

by Norman Levine

1. Introduction

DEFINITION 1.1. A uniform space (X, \mathcal{U}) is well-chained and \mathcal{U} is a well-chained uniformity iff x and y in X and U in \mathcal{U} implies that there exist x_1, \dots, x_n in X such that $x_1 = x$, $x_n = y$ and $(x_i, x_{i+1}) \in U$ for $1 \le i \le n-1$. x_1, \dots, x_n is called a U-chain from x to y.

The following two theorems appear in several texts on topology (see [1], [2]):

THEOREM 1.2. (X, \mathcal{U}) is a well-chained uniform space if $(X, \mathcal{F}(\mathcal{U}))$ is a connected topological space.

THEOREM 1.3. $(X, \mathcal{F}(\mathcal{U}))$ is a connected space if (X, \mathcal{U}) is compact and well-chained.

In §4, we show that a completely regular space (X, \mathcal{F}) is connected iff (X, \mathcal{U}) is well-chained for every uniformity \mathcal{U} which generates \mathcal{F} . Several corollaries are given.

In §2, we show that a space (X, \mathcal{U}) is well-chained iff $X \times X$ is the only equivalence relation in \mathcal{U} . Other characterizations of well-chained are obtained.

In § 3, we show that a dense subspace Y of a uniform space X is well-chained iff the uniform space X is well-chained.

In § 5, we show that the uniformly continuous image of a well-chained space is well-chained; we show that a product space is well-chained iff each factor space is well-chained.

In § 6, we show that a uniform space (X, \mathcal{U}) is well-chained if its hyperspace is well-chained; we show that a certain subspace of the hyperspace is well-chained if the space (X, \mathcal{U}) is well-chained.

Finally, in §7, we show that a certain function space is well-chained.

2. Characterizations of well-chained uniformities.

LEMMA 2.1. Let X be a set and $\triangle \subset V \subset X \times X$ where \triangle is the diagonal and $V = V^{-1}$. Then $\bigcup \{V^n : n \ge 1\}$ is an equivalence relation, V^n being $V^{n-1} \circ V$.

THEOREM 2.2. A space (X, \mathcal{U}) is well-chained iff $X \times X$ is the only equivalence relation in \mathcal{U} .

PROOF. A. Suppose that (X, \mathcal{U}) is well-chained and that $E \in \mathcal{U}$, E being an equivalence relation. We will show that $X \times X \subset E$; let $(x, y) \in X \times X$. There exist then an E-chain x_1, \dots, x_n from x to y. Then $(x, y) \in E^{n-1} = E$.

B. Let $X \times X$ be the only equivalence relation in \mathscr{U} and suppose that $(x, y) \in X \times X$ and that $U \in \mathscr{U}$. Let $V \subset U$, $V \in \mathscr{U}$, $V = V^{-1}$ and $E = \bigcup \{V^n : n \ge 1\}$. By lemma 2.1, E is an equivalence relation and hence $E = X \times X$. Thus $(x, y) \in E$ and hence $(x, y) \in V^n$ for some n. Hence there exists a V-chain from x to y. This V-chain is also a U-chain.

COROLLARY 2.3. A space (X, \mathcal{U}) is well-chained iff $X \times X = \bigcup \{U^n : n \ge 1\}$ for each $U \in \mathcal{U}$.

PROOF. A. Let (X, \mathcal{U}) be well-chained and suppose $U \in \mathcal{U}$. Let $V \subset U$, $V = V^{-1}$, $V \in \mathcal{U}$ and $E = \bigcup \{V^n : n \ge 1\}$. By lemma 2.1, E is an equivalence relation in \mathcal{U} and by theorem 2.2, $E = X \times X$. It follows then that $X \times X = \bigcup \{U^n : n \ge 1\}$.

B. Let $X \times X = \bigcup \{U^n : n \ge 1\}$ for each $U \in \mathcal{U}$. To show that (X, \mathcal{U}) is well-chained, by theorem 2.2, it suffices to show that $X \times X$ is the only equivalence relation in \mathcal{U} . Let $E \in \mathcal{U}$, E being an equivalence relation. Then $E = \bigcup \{E^n : n \ge 1\}$ $= X \times X$.

COROLLARY 2.4. (X, \mathcal{U}) is well-chained iff $\phi \neq A \neq X$, $U \in \mathcal{U}$ implies that $U[A] \cap \mathcal{C}A \neq \phi$.

PROOF. A. Let (X, \mathcal{Z}) be well-chained and suppose that $\phi \neq A \neq X$, $U \in \mathcal{Z}$ and that $U[A] \cap \mathcal{C}A = \phi$. There exists a $V \in \mathcal{Z}$, $V = V^{-1}$ and $V \circ V \subset U$. It is easy to see that $V[A] \cap V[\mathcal{C}A] = \phi$. Let $E = V[A] \times V[A] \cup V[\mathcal{C}A] \times V[\mathcal{C}A]$. Then E is an equivalence relation and $E \neq X \times X$ as the reader can easily check. By theorem 2.2, we arrive at a contradiction by showing that $E \in \mathcal{Z}$; assert $V \subset E$. Let $(x, y) \in V$. We may assume that $x \in A$. Then $y \in V[A]$ and $(x, y) \in V[A] \times V[A] \subset E$.

B. Let $U[A] \cap \mathscr{C}A \neq \phi$ for all $U \in \mathscr{U}$ and all $\phi \neq A \neq X$. We show that (X, \mathscr{U}) is well-chained. Let $E \in \mathscr{U}$, E being an equivalence relation. By theorem 2.2, it suffices to show that $E = X \times X$. Suppose $E \neq X \times X$. Let $(x, y) \notin E$ and let A = E[x]. Then $\phi \neq A \neq X$ and $E \in \mathscr{U}$. But $E[A] \cap \mathscr{C}A = A \cap \mathscr{C}A = \phi$, a contradiction.

COROLLARY 2.5. A space (X, \mathcal{U}) is not well-chained iff there exist disjoint, non empty open sets O_1 and O_2 such that $X = O_1 \cup O_2$ and $(O_1 \times O_1) \cup (O_2 \times O_2) \in \mathcal{U}$.

PROOF. A. Suppose $X=O_1\cup O_2$, $(O_1\times O_1)\cup (O_2\times O_2)\in \mathcal{U}$, O_i being disjoint, non-empty open sets. Then $(O_1\times O_1)\cup (O_2\times O_2)$ is an equivalence relation in $\mathcal U$ which is different from $X\times X$ and by theorem 2.2, $(X,\ \mathcal U)$ is not well-chained.

B. Suppose (X, \mathcal{U}) is not well-chained. By corollary 2.4, there exists $\phi \neq A \neq X$ and a $U \in \mathcal{U}$ such that $U[A] \cap \mathcal{C}A = \phi$. It is easy to see that A is both open and closed. It suffices then to show that $A \times A \cup \mathcal{C}A \times \mathcal{C}A \supset U \cap U^{-1}$. Suppose $(x, y) \in U \cap U^{-1}$, but $(x, y) \notin (A \times A) \cup (\mathcal{C}A \times \mathcal{C}A)$. We may assume that $x \in \mathcal{C}A$ and $y \in \mathcal{C}A$. Then $y \in U[A] \cap \mathcal{C}A$, a contradiction.

3. Subspaces.

THEOREM 3.1. Let (Y, \mathcal{V}) be a dense subspace of (X, \mathcal{U}) . Then (Y, \mathcal{V}) is well-chained iff (X, \mathcal{U}) is well-chained.

PROOF. A. Let (Y, \mathscr{Y}) be well-chained and let a, b be in X and U in \mathscr{U} with $U=U^{-1}$. Then $Y\cap U[a]\neq \phi\neq Y\cap U[b]$ since Y is dense in X. Take $c\in Y\cap U[a]$ and $d\in Y\cap U[b]$ and let $V=Y\times Y\cap U$. There exists a V-chain y_1, \dots, y_n from c to d and hence a, y_1, \dots, y_n , b is a U-chain from a to b.

B. Let (X, \mathcal{U}) be well-chained, a, b in Y and $V \in \mathcal{V}$. Then $V = Y \times Y \cap U$ for some $U \in \mathcal{U}$: let $W \in \mathcal{U}$ and $W \circ W \circ W \subset U$, $W = W^{-1}$. Now there exists a W-chain x_1, \dots, x_n from a to b. Choose $y_i \in W[x_i] \cap Y$ for each i. Then a, y_1 , \dots , y_n , b is a V-chain from a to b.

4. Connectedness.

THEOREM 4.1. Let (X, \mathcal{F}) be a completely regular topological space. Then (X, \mathcal{F}) is connected iff (X, \mathcal{U}) is well-chained for every \mathcal{U} such that $\mathcal{F} = \mathcal{F}(\mathcal{U})$.

PROOF. A. If (X, \mathcal{F}) is connected, then (X, \mathcal{U}) is well-chained for all \mathcal{U} for which $\mathcal{F} = \mathcal{F}(\mathcal{U})$. This is the statement of theorem 1.2.

B. Suppose (X, \mathcal{F}) is disconnected; then there exist non-empty disjoint open sets O_1 and O_2 such that $X=O_1\cup O_2$. Let $E=(O_1\times O_1)\cup (O_2\times O_2)$ and let \mathscr{V} be the uniformity for X consisting of all supersets of E. Let \mathscr{U} be any uniformity for X such that $\mathscr{F}=\mathscr{F}(\mathscr{U})$. Then $\mathscr{U}\vee\mathscr{V}$ generates \mathscr{F} ; but by corollary 2.5, $\mathscr{U}\vee\mathscr{V}$ is not well-chained since $E\in\mathscr{U}\vee\mathscr{V}$.

COROLLARY 4.2. Let (X, \mathcal{U}) be a fine uniform space. Then $(X, \mathcal{F}(\mathcal{U}))$ is connected iff (X, \mathcal{U}) is well-chained.

PROOF. This follows from the fact that a subuniformity of a well-chained uniformity is well-chained.

COROLLARY 4.3. Let (X, \mathcal{U}) be a uniformity with the property that $U \in \mathcal{U}$ iff U is a neighborhood of the diagonal. Then $(X, \mathcal{F}(\mathcal{U}))$ is connected iff (X, \mathcal{U}) is well-chained.

FROOF. 21 is a fine uniformity.

COROLLARY 4.4. Let (X, \mathcal{F}) be paracompact and regular. If \mathcal{U} consists of all neighborhoods of the diagonal, then (i) \mathcal{U} is a uniformity for \mathcal{F} and (ii) (X, \mathcal{F}) is connected iff (X, \mathcal{U}) is well-chained.

PROOF. (i) is well known and (ii) follows from corollary 4.3.

5. Transfers of well-chained uniformities and product spaces.

THEOREM 5.1. Let $f:(X, \mathcal{U}) \rightarrow (Y, \mathcal{V})$ be a uniformly continuous surjection. If (X, \mathcal{U}) is well-chained, then (Y, \mathcal{V}) is well-chained.

PROOF. Let E be an equivalence relation in Y and suppose that $E \in \mathcal{V}$. By theorem 2.2, it suffices to show that $E = Y \times Y$. Now $(f \times f)^{-1} E \in \mathcal{U}$ and $(f \times f)^{-1} E$ is an equivalence relation in X and since (X, \mathcal{U}) is well-chained, it follows that $(f \times f)^{-1} E = X \times X$. Then $E = Y \times Y$.

THEOREM 5.2. Let $f:(X,\mathcal{U})\to (Y,\mathcal{V})$ be a uniformly continuous surjection and suppose that \mathcal{U} is the weak uniformity, that is, \mathcal{U} has $\{(f\times f)^{-1}\ V:V\in\mathcal{V}\}$ as base. If (Y,\mathcal{V}) is well-chained, then (X,\mathcal{U}) is well-chained.

PROOF. Let a, b be in X and suppose $V \in \mathscr{V}$. We show that there is an $(f \times f)^{-1}$ V-chain from a to b. There exists a V-chain y_1 ,, y_n from f(a) to f(b). Let $x_1 = a$, $x_n = b$ and $f(x_i) = y_i$ for $2 \le i \le n-1$. Then $(x_i, x_{i+1}) \in (f \times f)^{-1}$ V for $1 \le i \le n-1$.

LEMMA 5.3. Let (X, Z) be a uniform space and x_1, \dots, x_n be a U-chain from x to y. Then $x_1, \dots, x_n, x_{n+1}, \dots, x_m$ is a U-chain from x to y where $x_i = y$ for $n+1 \le i \le m$. In other words, a U-chain from x to y can be entended to any finite length.

THEOREM 5.4. Suppose $(X, \mathcal{U}) = \times \{(X_{\alpha}, \mathcal{U}_{\alpha}) : \alpha \in \Delta\}$. Then (X, \mathcal{U}) is well-chained iff $(X_{\alpha}, \mathcal{U}_{\alpha})$ is well-chained for each $\alpha \in \Delta$.

PROOF: A. If (X, \mathcal{U}) is well-chained, then $(X_{\alpha}, \mathcal{U}_{\alpha})$ is well-chained for each $\alpha \in \Delta$ by theorem 5.1.

B. Suppose that $(X_{\alpha}, \mathcal{U}_{\alpha})$ is well-chained for each $\alpha \in \Delta$, x and y in X and $U = (P_{\alpha_1} \times P_{\alpha_1})^{-1} U_{\alpha_1} \cap \cdots \cap (P_{\alpha_k} \times P_{\alpha_k})^{-1} U_{\alpha_k}$. Then $x(\alpha_i)$, $y(\alpha_i)$ are in X_{α_i} and $U_{\alpha_i} \in \mathcal{U}_{\alpha_i}$. There exists then a U_{α_i} -chain x_{α_i} , x_{α_i} , x_{α_i} ,, x_{α_n} from $x(\alpha_i)$ to $y(\alpha_i)$ for $1 \le i \le k$. By lemma 5.3, we may assume that $n_1 = n_2 = \cdots = n_k = n$. Let $x_1 = x$, $x_n = y$. For $2 \le i \le n - 1$, let $x_i : \Delta \to \bigcup \{x_\alpha : \alpha \in \Delta\}$ as follows: $x_i(\alpha_j) = x_{\alpha_i}^i$ for $1 \le j \le k$ and $x_i(\alpha) \in X_{\alpha}$ arbitrary when $\alpha \ne \alpha_1$, ..., α_k . It is easy to see that x_1 , ..., x_n is a U-chain from x to y.

6. Hyperspaces

DEFINITION 6.1. For a set X, define $H(X) = \{A : A \subset X, A \neq \phi\}$. For $\triangle \subset U \subset X \times X$, let $H(U) = \{(A, B) : A \in H(X), B \in H(X), A \subset U[B], B \subset U[A]\}$.

DEFINITION 6.2 Let (X, \mathcal{U}) be a uniform space. Then $H(\mathcal{U})$ is the uniformity for H(X) generated by $\{H(U): U \in \mathcal{U}\}$ as base. $(H(X), H(\mathcal{U}))$ is the hyperspace determined by (X, \mathcal{U}) .

THEOREM 6.3. (X, \mathcal{U}) is well-chained if $(H(X), H(\mathcal{U}))$ is well-chained.

PROOF. Let x,y be in X and $U=U^{-1}$ be in \mathcal{U} . Then $\{x\}$, $\{y\}$ are in H(X) and $H(U) \in H(\mathcal{U})$. There exist then A_1 ,, A_n in H(X), a H(U)-chain from $\{x\}$ to $\{y\}$. Now $\{x\} = A_1 \subset U[A_2]$; let $x_1 = x$ and $x_2 \in A_2$ such that $(x_1, x_2) \in U$. But $A_2 \subset U[A_3]$; choose x_3 in A_3 such that $(x_2, x_3) \in U$. Continuing, we have $x_i \in A_i$ and $(x_i, x_{i+1}) \in U$ for $1 \le i \le n-1$. It follows that x_1, \dots, x_n is a U-chain from x to y.

The converse of theorem 6.3 is false as seen by

EXAMPLE 6.4. Let (X, \mathcal{U}) be the space of reals with the usual uniformity \mathcal{U} . Then (X, \mathcal{U}) is well-chained, but $(H(X), H(\mathcal{U}))$ is not well-chained since there is no $H(V_1)$ -chain from $\{x\}$ to X where $V_1 = \{(x, y) : |x-y| < 1\}$.

DEFINITION 6.5. Let $A \in H(X)$, (X, \mathcal{U}) being a uniform space. Then A is totally bounded iff for each $U \in \mathcal{U}$, there exist a_i in A such that $A \subset U[a_1, \dots, a_n]$. We define $T(X) = \{A : A \in H(X) \text{ and } A \text{ is totally bounded}\}$.

THEOREM 6.6. If (X, \mathcal{U}) is well-chained, then $(T(X), T(X) \times T(X) \cap H(\mathcal{U}))$ is well-chained.

We first prove some lemmas.

LEMMA 6.7. Let (X, \mathcal{U}) be well-chained, $A \in H(X)$, $U = U^{-1} \in \mathcal{U}$ and $x \in X$.

Then there exists an H(U)-chain from A to $A \cup \{x\}$.

PROOF. Let $a \in A$. Then there exists a U-chain x_1 ,, x_n from a to x. Then $(A, A \cup \{x_2\}) \in H(U)$, $(A \cup \{x_2\}, A \cup \{x_3\}) \in H(U)$,, $(A \cup \{x_{n-1}\}, A \cup \{x\}) \in H(U)$. Note that $A \cup \{x\}$ is totally bounded when A is totally bounded.

LEMMA 6.8. Suppose that (X, \mathcal{U}) is well-chained and that x and y are in X. Let $U=U^{-1} \in \mathcal{U}$. Then $\{x\}$ and $\{y\}$ are H(U)-chained.

PROOF. Let x_1 ,, x_n be a *U*-chain from x to y. Then $\{x_1\}$,, $\{x_n\}$ is an H(U)-chain from $\{x\}$ to $\{y\}$. Note that $\{x_i\} \in T(X)$.

LEMMA 6.9. Let (X, \mathcal{U}) be well-chained, $A = \{a_1, \dots, a_n\}$. Then A and $\{a_1\}$ are H(U)-chained where $U = U^{-1} \in \mathcal{U}$.

PROOF. By lemma 6.7, $\{a_1, \dots, a_i\}$ and $\{a_1, \dots, a_{i+1}\}$ are H(U)-chained.

Proof of theorem 6.6., Let A and B be in T(X) and $U=U^{-1}\in \mathcal{U}$. By definition 6.5, there exist points a_i and b_i such that $A\subset U[a_1, \dots, a_n]$ and $B\subset U[b_1, \dots, b_m]$ with a_i in A and b_i in B. It follows then that $(A, \{a_1, \dots, a_n\})$ and $(B, \{b_1, \dots, b_m\})$ are in H(U). By lemma 6.9, $\{a_1, \dots, a_n\}$ and $\{a_1\}$ are H(U)-chained and $\{b_1, \dots, b_m\}$ and $\{b_1\}$ are H(U)-chained. By lemma 6.8, $\{a_1\}$ and $\{b_1\}$ are H(U)-chained. It is clear that all chains may be taken in T(X). Thus $(T(X), T(X) \times T(X) \cap H(\mathcal{U}))$ is well-chained.

COROLLARY 6.10. Let (X, \mathcal{U}) be a totally bounded uniform space. Then (X, \mathcal{U}) is well-chained iff $(H(X), H(X) \times H(X) \cap H(\mathcal{U}))$ is well-chained.

PROOF. This follows from theorem 6.3 and the fact that H(X)=T(X) when (X,\mathcal{U}) is totally bounded.

7. Function spaces.

Let $X \neq \phi$, (Y, \mathcal{V}) a uniform space and $\phi \neq \mathcal{F} \subset Y^X$. For $V \in \mathcal{V}$, let $W(V) = \{(f, g) : (f(x), g(x)) \in V \text{ for all } x \in X \text{ and } f \text{ and } g \text{ in } \mathcal{F}\}$. Let $\mathcal{U}_{uc}(\mathcal{F})$ be the uniformity for \mathcal{F} with $\{W(V) : V \in \mathcal{V}\}$ as base.

THEOREM 7.1. Let (Y, \mathcal{V}) be a subspace of the reals with the usual uniformity and suppose that $X \neq \phi$. Suppose that \mathcal{F} is a non-empty subset of the bounded functions in Y^X with the property that f, g in \mathcal{F} implies that $\frac{1}{2}(f+g)$ is in \mathcal{F} . Then $(\mathcal{F}, \mathcal{U}_{uc}(\mathcal{F}))$ is well-chained.

PROOF. Let f and g be in $\mathcal F$ and suppose $V \in \mathcal V$. Then there exists an $\varepsilon > 0$

such that $V_{\varepsilon} \subset V$, $V_{\varepsilon} = \{(y_1, y_2) : y_{\varepsilon} \in Y \text{ and } |y_1 - y_2| < \varepsilon \}$.

Let $M = \sup\{|f(x) - g(x)| : x \in X\}$ and choose n so that $M/2^n < \varepsilon$.

Let $f_1 = f$, $f_2 = f_1 + (g - f)/2^n$, and $f_{i+1} = f_i + (g - f)/2^n$.

Then $f_{2^n+1}=g$ and $(f_i, f_{i+1})\in W(V_{\varepsilon})$ for $1\leq i\leq 2^n$. It is clear that $f_i\in \mathscr{F}$ for each i.

The Ohio State University.

REFERENCES

- [1] Steven A. Gaal, Point Set Topology, Academic Press, New York and London, (1964).
- [2] Hidegaro Nakano, *Uniform Spaces and Transformation Groups*. Wayne State University Press, Detroit, (1968).