SEMI-DEVELOPABLE SPACES AND SEMI-STRATIFIABLE SPACES

By Moo Ha Woo

A developable space is a well known topological space. Recently Charles C. Alexander [1] introduced a semi-developable space. Ceder [6] introduced M_3 -spaces and Borges [5] renamed them "stratifiable", while Geoffrey D. Creede [7] studied semi-stratifiable spaces.

In this paper, we shall give a relation between semi-developable spaces and semi-stratifiable spaces without an aid of any separation axioms and some properties of semi-developable spaces.

The notation and terminology used in this paper follow those of J.L. Kelley [9] mainly. N is the set of positive intgers.

DEFINITION 1. [1] A development for a space X is a sequence $\{g_n | n \in N\}$ of open covers of X such that $\{St(x, g_n) | n \in N\}$ is a local base at x, for each $x \in X$.

DEFINITION 2. [1] A semi-development for a space X is a sequence $\{g_n | n \in N\}$ of (not necessarily open) covers of X such that $\{St(x, g_n) | n \in N\}$ is a neighborhood base at x, for each $x \in X$.

A space is (semi-) developable if and only if there exists a (semi-) development for the space.

DEFINITION 3. [7] A topological space X is semi-stratifiable if, to each open set $U \subset X$, one can assign a sequence $\{U_n | n \in N\}$ of closed subsets of X such that

- (a) $\bigcup_{n=1}^{\infty} U_n = U$
- (b) $U_n \subset V_n$ whenever $U \subset V$.

A correspondence $U \longrightarrow \{U_n | n \in N\}$ is a *semi-stratification* for the space X whenever it satisfies the conditions of Definition 3.

Alexander [1] showed that a space is semi-metrizable if and only if it is a semi-developable T_0 -space. Creede [7] showed that a T_1 -space is a semi-metric space if and only if it is a first countable semi-stratifiable space.

THEOREM 1. Every semi-developable space is semi-stratifiable.

PROOF. Let X be a semi-developable space and $\Delta = \{g_n | n \in \mathbb{N}\}$ be a semi-development for X. For each n and each open set $U \subset X$, we take $U_n = \overline{[St(U', g_n)]'}$. Then the correspondence $U \longrightarrow \{U_n | n \in \mathbb{N}\}$ is a semi-stratification for X.

For, (a) $U = \bigcup_{n=1}^{\infty} U_n$: Let $y \in \bigcup_{n=1}^{\infty} U_n$, there is an integer m such that $y \in U_m$ (i. e., $y \in \overline{[St(U', g_m)]'}$). Suppose that $y \notin U$, then we have $St(y, f_m) \subset St(U', g_m)$. Therefore, we obtain $St(y, g_m) \cap \overline{[St(U', g_m)]'} = \phi$. Thus, $y \notin \overline{[St(U', g_m)]'}$. This is contradict to $y \in \overline{[St(U', g_m)]'}$.

For each $y \in U$, there is an integer m such that $\operatorname{St}(y, g_m) \subset U$. Therefore we have $\operatorname{St}(y, g_m) \cap U' = \phi$. For such m, we obtain $y \notin \operatorname{St}(U', g_m)$. Thus, we have $y \in \overline{[\operatorname{St}(U', g_m)]'}$. $(i, e, y \in U_m)$.

(b) If U, V be open sets in X such that $U \subset V$, then we have $St(U', g_n) \supset St(V', g_n)$ for each n. Hence we obtain $\overline{[St(U', g_n)]'} \subset \overline{[St(V', g_n)]'}$.

REMARK. The converse of Theorem 1 is not true since a semi-developable space is first countable but a semi-stratifiable space is not.

A topological space is F_{σ} -screenable if every open cover has a σ -discrete closed refinement which covers the space [7].

In [2], Bing showed that a developable space is F_{σ} -screenable. With the aid of Theorem 2.6 of [7] and Theorem 1, we have the following.

COROLLARY 2. A semi-developable space is F_{σ} -screenable.

In [1], Alexander showed that every Lindelöf semi-developable space is separable. Applying Theorem 1, we have the following.

PROPOSITION 3. In a semi-developable space X, we have the followings:

- (1) If X is normal, then X is perfectly normal.
- (2) If X is Lindelöf, then X is hereditarily separable.
- (3) If X is paracompact, then X is hereditarily paracompact.

PROOF. (1) is trivial.

(2) A semi-developable space has hereditary property. Since a Lindelöf (paracompact) space is hereditarily Lindelöf (paracompact) if and only if each open subspace is Lindelöf (paracompact). (see [4], [8]).

Applying Theorem 1, X is semi-stratifiable. Let U be an open set in X, then $U = \bigcup_{n=1}^{\infty} U_n$ where U_n is closed in X. Hence U is Lindelof. Consequently, X is

hereditarily separable.

(3) If an open subset U in X is a F_{σ} -set, then U is paracompact (see [8]). Hence it is trivial by Theorem 1,

Using a proof analogous to one given by Burke for Theorem 3.6 of [5], the following Theorem may be proved.

THEOREM 4. A semi-stratifiable space X with a locally semi-development is semi-developable.

PROOF. For each $x \in X$, there is an open neighborhood U_x with a semi-development $\Delta x = \{g_n(x) | n \in N\}$. Since X is F_σ -screenable, there is a σ -discrete closed refinement $\mathcal{L} = \overset{\circ}{\cup} \mathcal{L}_n$ of $\{U_x | x \in X\}$.

For each $B \in \mathcal{L}_n$, there exists a fixed element $x(B) \in X$ such that $B \subset U_{x(B)}$. Let $U_n(B) = X - \bigcup \{B^* | B^* \in \mathcal{L}_n, B^* \neq B\}$,

 $\mathcal{U}_{n,m}(B) = \{U_n(B) \cap G | G \in g_m[x(B)]\}$ and

 $\mathcal{U}_{n, m} = \{U \mid U \in \mathcal{U}_{n, m}(B), B \in \mathcal{L}_{n}\} \cup \{Q_{n}\} \text{ where } Q_{n} = X - \bigcup \{B \mid B \in \mathcal{L}_{n}\}.$ Then $\Delta = \{\mathcal{U}_{n, m} \mid n, m \in N\}$ is a semi-development for X.

For, it is trivial that $\mathcal{U}_{n,m}$ is a cover of X for each n, $m \in \mathbb{N}$. Let $z \in X$, there is an integer $n \in \mathbb{N}$ with some $B \in \mathcal{L}_n$ such that $z \in B$. If O be an open neighborhood of z, there is an integer m such that $z \in \text{Int St } [z, g_m(x(B))] \subset \text{St } [s, g_m(x(B))] \subset O \cap U_{x(B)}$.

Since Int St[z, \mathcal{U}_n , m] = Int St [z, \mathcal{U}_n , m(B)] =Int [$U_n(B) \cap \text{St}[z, g_m(x(B))]$] = $U_n(B) \cap \text{Int St}[z, g_m(x(B))] \Rightarrow z$,

hence we have (n, m) such that $z \in \text{Int } \operatorname{St}[z, \mathcal{U}_n, m] \subset \operatorname{St}[z, \mathcal{U}_n, m] = \operatorname{St}[z, \mathcal{U}_n, m(B)] \subset \operatorname{St}[z, g_m(x(B))] \subset 0.$

For each $k, l \in N$, we have $z \in \text{Int St}(z, \mathcal{U}_{k, l})$. For, If there is B such that $z \in B \in \mathcal{L}_k$, we obtain $z \in \text{Int St}(z, \mathcal{U}_{k, l})$ by the above way. If there is not B such that $z \in B \in \mathcal{L}_k$, then $z \in Q_k$. Since Q_k is an open set, we have $z \in \text{Int St}(z, \mathcal{U}_{k, l})$. Hence $\{\text{St}(z, \mathcal{U}_{k, l}) | k, l \in N\}$ is a neighborhood base at z, for each $z \in X$.

Soong Jun College

REFERENCES

 C.C. Alexander, Semi-developable spaces and Quotient image of matric spaces, Pac. J. of Math. Vol. 37, No. 2, (1971), 277-293.

- [2] R.H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), 175-186.
- [3] C. Borges, On stratifiable spaces, Pac. J. Math. Vol. 17 (1966), 1-16.
- [4] N. Bourbaki, Elements of mathematics part 1, Addison wesley Publishing Co. 1966.
- [5] D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.
- [6] J. Ceder, Some generalizations of metric spaces, Pac. J. of Math. 11 (1961) 105-126.
- [7] G. D. Creede, Concerning semi-stratifiable spaces, Paci. J. Math. Vol. 32, No. 1 (1970), 20-27.
- [8] J. Dugundji, Topology, Allyn and Babon, Boston, Mass., 1966.
- [9] J. L. Kelley, General Topology, New York, Van Nostrand, 1955.