THE STRUCTURE OF A CLASS OF REGULAR SEMIGROUPS, II

By R. J. Warne

We describe the structure of regular semigroups whose idempotents form a semigroup mod partial chains of left zero semigroups, partial chains of right zero semigroups, and inverse semigroups. Refer to [6] for a related structure theorem and a more complete bibliography.

If D is a semigroup, E(D) will denote the set of idempotents of D. If $a \in D$, $\mathscr{I}(a)$ will denote the collection of inverses of a. Unless otherwise specified, we follow the definitions and notation of [1]. In particular, \mathscr{R} and \mathscr{L} will denote Green's relations.

Let W be a partial groupoid which is a union of a collection of pairwise disjoint subsemigroups $(T_{\delta}:\delta\in\Lambda)$ where Λ is a semilattice. If $x\in T_{\gamma}$, $y\in T_{\delta}$, and $\delta\leq\gamma$ (in Λ) imply xy is defined (in W) and $xy\in T_{\delta}$, and, if $\xi\leq\delta$ and $z\in T_{\xi}$ imply (xy)z=x(yz). W is termed a (lower) partial chain of the semigroups $(T_{\delta}:\delta\in\Lambda)$. If $x\in T_{\gamma}$, $y\in T_{\delta}$, and $\gamma\leq\delta$ imply xy is defined (in W) and $xy\in T_{\gamma}$, and $\xi\geq\delta$ and $z\in T_{\xi}$ imply (xy)z=x(yz), W is termed an (upper) partial chain of the semigroups $(T_{\delta}:\delta\in\Lambda)$. Partial chains of left groups were employed in [7].

Let M and N be sets. A mapping θ of a subset C of M into a subset F of N will be termed a partial mapping of M into N. We let $C=D(\theta)$ and $F=R(\theta)$. The set of all partial mappings of M into N is denoted by P(M, N). We are now in a position to state our theorem.

Let X be an inverse semigroup with semilattice of idempotents Y. Let I be a (lower) partial chain of left zero semigroups $(I_y:y\in Y)$, and let J be an (upper) partial chain of right zero semigroups $(J_y:y\in Y)$. Let $(r,s)\to\alpha_{(r,s)}$ be a mapping of X^2 into $P(I\times J,I)$ and $(r,s)\to\beta_{(r,s)}$ be a mapping of X^2 into $P(I\times J,I)$ subject to the conditions

- I. $D(\alpha_{(r,s)}) = D(\beta_{(r,s)}) = J_{r^{-1}r} \times I_{ss^{-1}} : R(\alpha_{(r,s)}) = I_{(rs)(rs)^{-1}} : R(\beta_{(r,s)}) = J_{(rs)^{-1}rs}$
- II. If $j \in I_{s^{-1}s}$, $p \in I_{tt^{-1}}$, $q \in I_{t^{-1}t}$, and $m \in I_{gg^{-1}}$, $(j,p)\alpha_{(s,t)}((j,p)\beta_{(s,t)} \cdot q, m)\alpha_{(st,g)}$

$$=(j, p((q, m)\alpha_{(t,g)}))\alpha_{(s,tg)}$$
 and

 $(j,p((q,m)\alpha_{(t,g)}))\beta_{(s,tg)}(q,m)\beta_{(t,g)}=((j,p)\beta_{(s,t)},q,m)\beta_{(st,g)}.$

Let (X, I, J, α, β) denote $\{(i, s, j) : s \in X, i \in I_{ss^{-1}}, j \in J_{s^{-1}s}\}$ under the multiplication

 $(i, s, j)(p, t, q) = (i((j, p)\alpha_{(s,t)}), st, (j, p)\beta_{(s,t)}q).$

THEOREM. S is a regular semigroup whose idempotents form a semigroup if and only if $S \cong (X, I, J, \alpha, \beta)$ for some collection X, I, J, α , β .

PROOF. Let S be a regular semigroup such that E(S) is a semigroup. By [2, theorem 3], $\lambda = \{(a, b) \in S : \mathcal{I}(a) = \mathcal{I}(b)\}$ is the smallest inverse semigroup congruence on S. Let $X=S/\lambda$, Y=E(X), and $\lambda_s=s\lambda^{-1}$. Hence, $\{\lambda_s:s\in X\}$ is the collection of λ -classes of S and $\lambda_s \lambda_t \subset \lambda_{st}$. By [4:1, p.129, Ex. 1], E(S) is a semilattice Ω of rectangular bands $(E_{\delta}:\delta\in\Omega)$. Utilizing [3, lemma 2.2,4], $\{\lambda:$ $s \in Y$ is the collection of λ -classes of S containing idempotents. If e, $f \in E_{\delta}$ ($\delta \in \Omega$), $\mathcal{J}(e) = \mathcal{J}(f)(\mathcal{J}(e) \cap \mathcal{J}(f)) \neq \emptyset$ implies $\mathcal{J}(e) = \mathcal{J}(f)$ by [2, theorem 2] and, hence, $E_s \subset \lambda_s$ for some $s \in Y$. If $h \in \lambda_s$, $\mathcal{I}(h) = \mathcal{I}(e)$, $h \in E(S)$ $(h \in \mathcal{I}(e))$ implies $h \in E(S)$ by [5, lemma 1.3] and, hence, $h \in E_{\delta}$. Thus, E(S) is the semilattice Y of rectangular bands. $(\lambda_s:s\in Y)$. If $s\in Y$, select and fix an \mathscr{L} -class I_s of λ_s and select and fix an \mathcal{R} -class J_s of λ_s . For $s \in X$, let u_s denote a representative element of λ_s . If $e \in I_s$, $f \in I_t$, and $t \le s$, $(ef, f) \in \mathcal{L}(\lambda_t)$ and, hence, $ef \in I_t$. Let $I = \bigcup (I_s : s \in Y)$ and, if $a,b \in I$, define $a \circ b = ab$ (product in S) if $ab \in I$ while $a \circ b$ is undefined if $ab \notin I$. Hence, the partial groupoid (I, \circ) is a (lower) partial chain of left zero semigroups $(I_s: s \in Y)$ (since no confusion will arise, we replace "o" by juxtaposition). Similarly, $J = \bigcup (J_s : s \in Y)$ is an (upper) partial chain of right zero semigroups $(J_s:s\in Y)$. Noting the proof of [6, lemma 5], it is easily seen that every element of S may be uniquely expressed in the form $x=iu_s j$ where $i \in I_{ss^{-1}}$ and $j \in I_{s^{-1}s}$. Thus, if $j \in I_{r^{-1}r}$ and $i \in I_{ss^{-1}}$, we may define $\alpha_{(r,s)} \in P(I \times J, I)$ and $\beta_{(r,s)} \in P(I \times J, J)$ satisfying I by the expression $u_r(ji)u_s = (j, i)\alpha_{(r,s)} u_{rs}(j, i)$ $\beta_{(r,s)}$, while, by applying the definitions of $\alpha_{(r,s)}$ and $\beta_{(r,s)}$ to $(u_s(jp))(u_i(qm)u_g)$ $=(u_s(jp)u_t)((qm)u_g)$, we obtain I. Furthermore, since $(iu_sj)(pu_tq)=i(u_s(jp)u_t)q$ $=i((j, p) \alpha_{(s,t)}) u_{st}(j, p) \beta_{(s,t)}q, (iu_s j)\varphi=(i, s, j)$ defines an isomorphism of S onto (X, I, J, α, β) . We next show that $T=(X, I, J, \alpha, \beta)$ is a regular semigroup such that E(T) is a semigroup. We utilize I to establish closure and If to establish associativity. Utilizing I, $E(T) = \{(i, s, j) : s \in Y, i \in I_s, j \in J_s\}$

and, hence, E(T) is a semigroup since Y is a semigroup. If $(i, s, j) \in T$, $k \in I_{s^{-1}s}$, and $n \in J_{ss^{-1}}$, $(i, s, j)(k, s^{-1}, n)(i, s, j) = (i, s, j)$ by utilizing I.

The theorem may be specialized to give a structure theorem for idempotent semigroups. This topic will be treated separately [8].

University of Alabama in Birmingham

REFERENCES

- A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Vol. 1, Math. Surveys of the Amer. Math. Soc. 7, Providence, R.I., 1961; Vol. 2. Math. Surveys of Amer. Soc. 7, 1967.
- [2] T.E. Hall, On regular semigroups whose idempotents form a semigroup, Bull. Austral. Math. Soc. 1(1969), 195-208.
- [3] M. Gerard Lallement, Congruences et equivalences de Green sur un demi-group regulier,
 C. R. Acad. Sci. Paris 262 (1966), 613-616.
- [4] David McLean, Idempotent Semigroups, Amer. Math. Monthly 61 (1954), 110-113.
- [5] N. R. Reilly and H. E. Schieblich, Congruences on Regular Semigroups, Pacific J. Math. 23 (1967), 348-360.
- [6] R.J. Warne, The structure of a class of regular semigroups, to appear.
- [7] R.J. Warne, Bands of maximal left groups, to appear.
- [8] R. J. Warne, On the structure of idempotent semigroups, to appear.