SET-CONNECTED MAPPINGS
By Jin Ho Kwak

In this paper, we defined newly set-connected mappings and obtain a charac-
terization and some properties about this mapping and find the relation between
this mapping and a continuous mapping or a connected mapping. Furthermore,
we shall find what conditions must be placed upon the spaces in order to be able
to conclude that a set-connected mapping is continuous. For any concepts which
we do not define or elaborate upon, the reader is referred to Dugundji’s book [3].

DEFINITION 1. [4]. A space is said to be connected between A and B if there is
no closed-open set F such that ACF and FNB=¢. Clearly, the connectedness
between two sets is a symmetric relation.

DEFINITION 2. Let X and ¥ be topological spaces and f: X—Y be a mapping.
If X is connected between A and B, then f(X) is connected between f(A) and
JS(B) with respect to relative topology. Then f is called a set-comnected mapping
of XtoY.

LEMMA 1. [4]. If a subspace of the space is connected between A and B, then
so is the whole space.

Now, we give a characterization of set-connected mappings.

THEOREM 2. Let f: X—Y be a mapping. Then f is a set-commected mapping
if and only if f~Y(F) is a closed-open subset of X for any closed-open subset F
of f(X).

PROOF. Only If; Let F be a closed-open subset of f(X). Suppose f~L(F) is
not closed in X. Let p be a limit point of f~(F) which does not belong to
F~YF). Then X is connected between p and f~'(F). Consequently, f(X) is connected
between f(p) and f[f~1(F)], which contradicts to F is closed-open in f(X) and
FIfYF))CFCFf(p). Similarly, f~!(F) is a open subset of X.

If; Suppose f(X) is not connected between f(A) and f(B). Then there exists a
closed-open subset F in f(X) such that f(A)CFC#f(B). By hypothesis, f~'(F)
is a closed-open subset of X and ACf~'(F)C#B. Therefore X is not connected
between A and B.
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REMARK. Also, if f is a set-connected, then f~!(F) is a closed-open subset
of X for any closed-open subset F of Y.

COROLLARY 1. Let f:X—Y be a set-connected mapping. If F is a closed-open
subset of f(X) (or Y), then each component of f~1(F) is closed in X.

COROLLARY 2. Every continuous mapping is a sel-connecled.
Following example shows that the converse of corollary 2 is not true.

EXAMPLE 1. Let f: E'—E' be defined by f(x)=x+" (x%0) and f(0)=1, where
E' is a Euclidean 1—space. Then f is a set-connected mapping, (cf. lemma 3),
but f is not continuous at 0.

REMARK. The set-connected mapping on a space to a O-dimensional space is
a continuous.

We may state the following lemma 3 and lemma 4 immediately.

LEMMA 3. Every mapping f on X to Y such that f(X) is a connected set is a
sei-connected mapping.

LEMMA 4. Let f: X—Y be a sel-connected mapping. If X is a connected set,
then f(X) is a connected sel. %

LEMMA 5. Let f: X—Y be a sel-connected mapping and A be a subset of X such
that f(A) is a closed-open subset of f(X). Then flA: A—Y is a sel-connected.

PROOF. Let A be connccted between By and B,. By lemma 1, X is connected
between B and B,. Therefore f(X) is connected between f(B;) and f(B,).

Since f(A4) is a closed-open subset of f(X), f(A4) is connected between f(B,)
and f(B,).

THEOREM 6. Let f: XY be a sei-connected open surjection, and assume that
each fiber f‘“l(_v) is connected. Then for any closed-open subset F of Y, F is
connected (component) if and only if f~(F) is connected (component). In parti-
cular, Y is connected if and only if X is connected.

PROOF. Only if; Suppose f~!(F) is not connected in X. Then there are open
subsets A and B of X such that f~1(F) NANB=¢, f~YF)CAUB and
FUPNAxd=f"Y(F)NB. Since f~(y) is connected, either f~Y(y)CA or
F~Y(»CB for every yEF. Therefore FNf(ANS(B)=¢, FC(AUS(B) and FN
f(A)=¢p=FNS(B). Since f is open mapping, f(A) and f(B) are open subsets of
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Y. Hence F is not connected.

If; Since f[f~)(F)]=F is closed-open in ¥, by lemma 5 fIf~(F) is a sct—
connected mapping and f~'(F) is a connected sct. Hence by lemma 4,
FIf-YF) [f~Y(F)]=F is a connected set.

THEOREM 7. Let f: X—Y be a set-connected mapping and the components of Y
be open sets. Then for each pEY, [f[f~'(p)] is contained only one component. In fact,.
FLFY(p)] is contained the component coniaining p.

PROOF. Let C(p) denote the component containing p and x€f~!(p). Then X is
connected between f~X(p) and x. Therefore ¥ is connected between p and f(x).
Since C(p) is a closed-open subset of ¥, f(x) is contained in C(p). Hence
I CCp).

THEOREM 8. Let X be a lopological space and x has a connecied neighborhood
Sfor each x€X. If a sequence of points p, of X converge to p, then ihere exist
some n, such that X is connected between p and p, for each n>n,.

PROOF. If p and p, are contained a connected set, then X is connected between
p and p,. Hence we obtain the result easily.

COROLLARY 3. If a sequence of points p, of a locally connected space converge
to p, then there exisis some ny such that X is connected belween p and p, for each
n=>y.

EXAMPLE 2. In above theorem 8, the hypothesis of “x has a connected
neighborhood for each x€X.” is essential : in ordinal space [0, w], where w is
the first infinite ordinal number, the sequence 0, 1, 2, «sesee , 7, -+ i3 converge to
w, but [0, w] is not connected between w and » for each n€ [0, wl.

In order to say the following, we note that a Hausdorff space in which the
closure of every open sets is open is called an extremally disconnected space. [5].

THEOREM 9. Let f:X—Y be a sel-connected mapping and Y be an exiremally
disconnected space. Then G(f) is closed in X XY.

PROOF. Suppose f(x)=y. Then there exists a closed-open neighborhood V of y
not containing f(x), therefore f~1(V) is closed-open in X and x&f~ (V).
Taking U=X—f~Y(V) is a neighborhood of z, then AU)NV=¢@. By Lemma 1
of [2], G(f) is closed.

In [2], it was shown that any mapping on a first countable space into a coun-
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tably compact space having a closed graph is continuous. Combining this with
theorem 9, we have the result:

THEOREM 10. Let f: X—Y be a sel-connected mapping, X be a first countable
space and let Y be an extremally disconnecied countably compact space. Then [ is
continuous.

THEOREM 11. Let f : X—Y be a set-connected mapping, If x has a connected
nei ghborhood for each x€X and Y is an extremally disconnected space, then [ is
conlinuous.

PROOF. Let x€X be given. It is sufficient to show that f(U)=f(x). for a
connected neighborhood U of x. Suppose that there exist #” in U such that f(x")
2:f(x). Then there is a closed-open subset V of ¥ such that f(x)EV and f(x")
&V. Then f~Y¥V)NU is a nonempty closed-open proper subset of a subspace U,
which contradicts.

Finally, the following example shows that the concepts: “set-connected mapping”
and “connected mapping” are independent.

EXAMPLE 3. The mapping f defined in example 1 is a set-connected but not a
-connected. Next, let X=[0, 1]—{% | nEZ"’] be a subspace of E', where Z*

is a set of all positive integers and let ¥ ={0}U{% | nGZ*“} be a space with
discrete topology.

- 1
n+1" n
Then g is a connected mapping but not a set-connected.

Define g : X—Y by g(x)=%+1 for any xe( Jf'). (n€Z™) and g(0)=0.
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