SET-CONNECTED MAPPINGS

By Jin Ho Kwak

In this paper, we defined newly set-connected mappings and obtain a characterization and some properties about this mapping and find the relation between this mapping and a continuous mapping or a connected mapping. Furthermore, we shall find what conditions must be placed upon the spaces in order to be able to conclude that a set-connected mapping is continuous. For any concepts which we do not define or elaborate upon, the reader is referred to Dugundji's book[3].

DEFINITION 1. [4]. A space is said to be *connected between A and B* if there is no closed-open set F such that $A \subset F$ and $F \cap B = \phi$. Clearly, the connectedness between two sets is a symmetric relation.

DEFINITION 2. Let X and Y be topological spaces and $f: X \rightarrow Y$ be a mapping. If X is connected between A and B, then f(X) is connected between f(A) and f(B) with respect to relative topology. Then f is called a *set-connected mapping* of X to Y.

LEMMA 1. [4]. If a subspace of the space is connected between A and B, then so is the whole space.

Now, we give a characterization of set-connected mappings.

THEOREM 2. Let $f: X \to Y$ be a mapping. Then f is a set-connected mapping if and only if $f^{-1}(F)$ is a closed-open subset of X for any closed-open subset F of f(X).

PROOF. Only If; Let F be a closed-open subset of f(X). Suppose $f^{-1}(F)$ is not closed in X. Let p be a limit point of $f^{-1}(F)$ which does not belong to $f^{-1}(F)$. Then X is connected between p and $f^{-1}(F)$. Consequently, f(X) is connected between f(p) and $f[f^{-1}(F)]$, which contradicts to F is closed-open in f(X) and $f[f^{-1}(F)] \subset F \subset \mathscr{C} f(p)$. Similarly, $f^{-1}(F)$ is a open subset of X.

If; Suppose f(X) is not connected between f(A) and f(B). Then there exists a closed-open subset F in f(X) such that $f(A) \subset F \subset \mathscr{C}f(B)$. By hypothesis, $f^{-1}(F)$ is a closed-open subset of X and $A \subset f^{-1}(F) \subset \mathscr{C}B$. Therefore X is not connected between A and B.

Jin Ho Kwak

REMARK. Also, if f is a set-connected, then $f^{-1}(F)$ is a closed-open subset of X for any closed-open subset F of Y.

COROLLARY 1. Let $f: X \rightarrow Y$ be a set-connected mapping. If F is a closed-open subset of f(X) (or Y), then each component of $f^{-1}(F)$ is closed in X.

COROLLARY 2. Every continuous mapping is a set-connected.

Following example shows that the converse of corollary 2 is not true.

EXAMPLE 1. Let $f: E^1 \to E^1$ be defined by $f(x) = x^2$, $(x \ge 0)$ and f(0) = 1, where E^1 is a Euclidean 1-space. Then f is a set-connected mapping, (cf. lemma 3), but f is not continuous at 0.

REMARK. The set-connected mapping on a space to a 0-dimensional space is a continuous.

We may state the following lemma 3 and lemma 4 immediately.

LEMMA 3. Every mapping f on X to Y such that f(X) is a connected set is a set-connected mapping.

LEMMA 4. Let $f: X \rightarrow Y$ be a set-connected mapping. If X is a connected set, then f(X) is a connected set.

LEMMA 5. Let $f: X \rightarrow Y$ be a set-connected mapping and A be a subset of X such that f(A) is a closed-open subset of f(X). Then $f|A: A \rightarrow Y$ is a set-connected.

PROOF. Let A be connected between B_1 and B_2 . By lemma 1, X is connected between B_1 and B_2 . Therefore f(X) is connected between $f(B_1)$ and $f(B_2)$.

Since f(A) is a closed-open subset of f(X), f(A) is connected between $f(B_1)$ and $f(B_2)$.

THEOREM 6. Let $f: X \rightarrow Y$ be a set-connected open surjection, and assume that each fiber $f^{-1}(y)$ is connected. Then for any closed-open subset F of Y, F is connected (component) if and only if $f^{-1}(F)$ is connected (component). In particular, Y is connected if and only if X is connected.

PROOF. Only if; Suppose $f^{-1}(F)$ is not connected in X. Then there are open subsets A and B of X such that $f^{-1}(F) \cap A \cap B = \phi$, $f^{-1}(F) \subset A \cup B$ and $f^{-1}(F) \cap A \rightleftharpoons \phi \rightleftharpoons f^{-1}(F) \cap B$. Since $f^{-1}(y)$ is connected, either $f^{-1}(y) \subset A$ or $f^{-1}(y) \subset B$ for every $y \in F$. Therefore $F \cap f(A) \cap f(B) = \phi$, $F \subset f(A) \cup f(B)$ and $F \cap$ $f(A) \rightleftharpoons \phi \rightleftharpoons F \cap f(B)$. Since f is open mapping, f(A) and f(B) are open subsets of Y. Hence F is not connected.

If; Since $f[f^{-1}(F)] = F$ is closed-open in Y, by lemma 5 $f|f^{-1}(F)$ is a setconnected mapping and $f^{-1}(F)$ is a connected set. Hence by lemma 4, $f|f^{-1}(F)[f^{-1}(F)] = F$ is a connected set.

THEOREM 7. Let $f: X \to Y$ be a set-connected mapping and the components of Y be open sets. Then for each $p \in Y$, $f[\overline{f^{-1}(p)}]$ is contained only one component. In fact, $f[\overline{f^{-1}(p)}]$ is contained the component containing p.

PROOF. Let C(p) denote the component containing p and $x \in f^{-1}(p)$. Then X is connected between $f^{-1}(p)$ and x. Therefore Y is connected between p and f(x). Since C(p) is a closed-open subset of Y, f(x) is contained in C(p). Hence- $f[\overline{f^{-1}(p)}] \subset C(p)$.

THEOREM 8. Let X be a topological space and x has a connected neighborhood for each $x \in X$. If a sequence of points p_n of X converge to p, then there exist some n_0 such that X is connected between p and p_n for each $n \ge n_0$.

PROOF. If p and p_n are contained a connected set, then X is connected between p and p_n . Hence we obtain the result easily.

COROLLARY 3. If a sequence of points p_n of a locally connected space convergeto p, then there exists some n_0 such that X is connected between p and p_n for each $n \ge n_0$.

EXAMPLE 2. In above theorem 8, the hypothesis of "x has a connected neighborhood for each $x \in X$." is essential: in ordinal space $[0, \omega]$, where ω is the first infinite ordinal number, the sequence 0, 1, 2,, n, is converge to ω , but $[0, \omega]$ is not connected between ω and n for each $n \in [0, \omega]$.

In order to say the following, we note that a Hausdorff space in which the closure of every open sets is open is called an extremally disconnected space. [5].

THEOREM 9. Let $f: X \rightarrow Y$ be a set-connected mapping and Y be an extremally disconnected space. Then G(f) is closed in $X \times Y$.

PROOF. Suppose $f(x) \neq y$. Then there exists a closed-open neighborhood V of y not containing f(x), therefore $f^{-1}(V)$ is closed-open in X and $x \notin f^{-1}(V)$. Taking $U = X - f^{-1}(V)$ is a neighborhood of x, then $f(U) \cap V = \phi$. By Lemma 1 of [2], G(f) is closed.

In [2], it was shown that any mapping on a first countable space into a coun-

Jin Ho Kwak

tably compact space having a closed graph is continuous. Combining this with theorem 9, we have the result:

THEOREM 10. Let $f: X \rightarrow Y$ be a set-connected mapping, X be a first countable space and let Y be an extremally disconnected countably compact space. Then f is continuous.

THEOREM 11. Let $f: X \rightarrow Y$ be a set-connected mapping, If x has a connected neighborhood for each $x \in X$ and Y is an extremally disconnected space, then f is continuous.

PROOF. Let $x \in X$ be given. It is sufficient to show that f(U)=f(x). for a connected neighborhood U of x. Suppose that there exist x' in U such that $f(x') \doteq f(x)$. Then there is a closed-open subset V of Y such that $f(x) \in V$ and $f(x') \notin V$. Then $f^{-1}(V) \cap U$ is a nonempty closed-open proper subset of a subspace U, which contradicts.

Finally, the following example shows that the concepts: "set-connected mapping" and "connected mapping" are independent.

EXAMPLE 3. The mapping f defined in example 1 is a set-connected but not a connected. Next, let $X = [0, 1] - \left\{\frac{1}{n} \mid n \in Z^+\right\}$ be a subspace of E^1 , where Z^+ is a set of all positive integers and let $Y = \{0\} \cup \left\{\frac{1}{n} \mid n \in Z^+\right\}$ be a space with discrete topology.

Define $g: X \to Y$ by $g(x) = \frac{1}{n+1}$ for any $x \in \left(\frac{1}{n+1}, \frac{1}{n}\right)$, $(n \in Z^+)$ and g(0) = 0. Then g is a connected mapping but not a set-connected.

Kyungpook University

REFERENCES

- W. J. Pervin and N. Levine, Connected mappings of Hausdorff space, Proc. Amer. Math. Soc., Vol. 9 (1958), 488-495.
- 2. P.E. Long, Functions with closed graphs, Amer. Math. Monthly, Vol. 76 (1969), 930-932.
- 3. J. Dugundji, Topology, Allyn and Bacon, Boston, 1968.
- 4. K. Kuratowski, Topology II, Academic Press, New York, 1968.
- N. Bourbaki, *Elements of Mathematics*, General Topology I, Addison-Wesley, Reading, Mass., 1966.