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By Jin Suk Pak

§ 1. Introduction

A structure induced on a submanifold of codimension 2 of an almost Hermitian
manifold and called an (f, g, #, v, A)-structure has been studied in [1], [2], [3], [4].
The submanifolds of codimension 2 in an even-dimensional Fuclidean space in terms
of this structure have been studied by Ki [4], [5], Okumura [7], Pak [4], Yano

[5], [6], and the others.
In the present paper, we study submanifolds of codimension 2 of the ecven-

‘dimensional Euclidean space under the assumptions such that the linear transfor-
mations hjiand k,-" which are defined by the second fundamental tensors anti-
commute with f;'.

In §2, we consider a submanifold of codimension 2 of a Kaehlerian manifold
and find several equations which the induced (f, g, #, v, A) -structure satisfies.

In §3, we study submanifolds of codimension 2 of the even dimensional Eucli-
dean space under the our assumptions stated above. In the last §4, we study

submanifolds under the same assumptions in a locally Fubinian manifold.
2. Certain submanifolds of codimension 2of 2 Kihlerian manifeld ([4], [6]).
Let M be a 2n-dimensional differentiable manifold which is covered by a system
of coordinate neighborhoods {U: x"} and which is differentiably immersed in a

(2n+2)-dimensional K#hlerian manifold M covered by a system of coordinate
neighorhoods {U/: »*} as a submanifold of codimension 2 by the equations

¥=¢G"),

where, hear and in the sequel the indices &, 4, g, ., -+ run over the range {1,

2, »-, 2n+2} and &k, 7, j, --- over the range {1, 2, ---, 2n} respectively.

We put (F,%, G,;) be the Kdhlerian structure, that is,
¥ F'uxFl,u____. _a‘lﬂl

and G,; a Riemannian metric such that
G P =G\
ﬁp‘FZK:O’
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where [7 denotes by the operator of covariant differentiation with respect to the
Christoffel symbols{ ;2} formed with G,; and put
Bf=dy~, (8;=3/3x").

Then we find B;* is, for fixed #,a local vector field of M tangent to M and
the vectors B;* are linearly independent in each coordinate neighborhood. B;®is

also, for fixed ¥, a local 1-form of M and then the transforms F;*B}, F;C*

and F;_‘D;‘ may be respectively expressed as linear combinations of B;f, C* and
D¥, that is,

FrBi=f] B +u, C*+u, DF,

(2.1) FC*'=~u Bf+AD",

FfD'=—y' Bf-2C",
where C* and D* are two mutually orthogonal unit vectors of M normal to M
and chosen in such a way that 2u+2 vectors B, C*, D* give the positive ori-
entaion of M, g;; being the Riemannian metric on M induced from that of M, 2

is a function on M and
i ti i t
=ug, v=ug

We can easily verify that 4 is a function globally defined on M. From (2,1)
and taking account of itself, we find

t ok h, _h h
fj 1, =—5j TU UV,
@2 f ldt= -2, fM'=2,
i 2 .4
wu=1-2"=v'y,
ﬂiv'.:O, v:-ﬁi, =0,

that is, M admits an (f, g, #, v, A)-structure [6].
Moreover, f; is skew-symmetric with respect to /7 and ¢, where

fit =f |'sg is
We denote by[;-’z-] and V, the Christoffel symbols formed with &;; and by the

operator of covariant differentiation with respect to U"] respectively.
Then the equations of Gauss and Weingarten of M are
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2.3) VC'=-h/ Bf+j; Df

and
V, D*=—#; Bf-1C"

respectively, where J;; and kj; are the second fundamental tensors with respect to
C* and D* respectwely. and kf, # k; are Weingarten maps corresponding the nor-
mals defined by : i
kjt' = hjl g‘ﬁ, : kjl‘: kjt gu'
and / is the third fundamental tensor.
From (2.1) and (2.3), we have [6]

ijisz —k..u’-{-—k -’H-—kn-ﬂs'i"kjs Ui

Vind=— Zk i
(2. 4) J f J :

Vjvi:— Jfflf+1hjl— lﬂ

Vid=ka — ko',

From now and in the sequel we suppose that in the submanifold M hj and k
anti-commute with fj. that is,

@5) fin'=-hlf fir'=-k! 1,

or equivalently j}’h,,- and f;k,,- are symmetric with respect to j and 7 and that
the globally defined function A is constant different from 0 and 1 on the submani-
fold M.
Transvecting (2.5) with f; and using of (2.2), we get
h{=1-22)(a+7),
where we have put
hg'e'=(1-Da, b =1-Dy.
Transvecting again (2.5) by «' and taking account of (2.2), we also get
0=hlu'’f;—2n" _
and then by transvecting the above equation with f7 we obtain
hj'ur=auj+,8v-,
where
hyw'v'=(1-258
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On the other hand, transvecting (2.5) by v/, we can also finc
h!V foi+- Ay =0.

Transvecting the above equation with fj and taking account of (2,2), we have
h;v,=‘8uj+rv,-.

From these relations we can see

Ala+7r)=0.
. By the similar method we can also verify that

kj'ut=auj+30.. kj‘u,=3uj+rvj.
k=0,
where we have put

kyu'd =(1-20a, kyu'v'=1-25B,
ky o' =(1 -57.

Moreover, from (2.4) we have
h j,-vi =k; jui.

Thus, summing up, we find
h,-,-u"=auj+ Bv;
hﬁvi=ﬂuj—avj.

(2.6) kﬁﬂi:ﬁ”j_a”ja
k’-iﬂi: —auj—ﬂt’j.

h'=0, k'=0.

§3. Anti-submanifold of codimension 2 in a Euclidean space.

In this section we consider the submanifold M of codimension 2 under the
assumptions stated in the previous section in a (2r+2)-dimensional Euclidean space.

In this submanifold M, it is well known that the equations of Gauss, Codazzi
and Ricci are

3.1 R*ﬁ’=k;hﬁ—h;kki +hy Ky _ki’ Ry
V=V hi— kit k=0,

(3.2)

and
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(3.3) V1;=Vd;+h/ky—hiky=0,
respectively, where R, are components of the curvature tensor of M.
Now, covariantly differentiating the first equation of (2,6), we have
(Vs du' +hy; Voot
=(V@u;+(V,B)v;+aVu;+8V,w; .

Taking the skew-symmetric part of this equation with respect to £ and j, and
then substituting (2.6) and (3.2) we can see

B, D) iy f™ +A Uk — by
=(Vx—38I ,,)uj— (V,a—Sﬁl J;)u“,
+(V,8+3al)v;~ (V,;8+3al v,

by virtue of (2.2),(2,4) and (2.5).
Tranvecting (3.4) with #' and taking account of (2.6), we have

0=-2D(V,a—381) - (V,a—381)u,
- (V,8+3al)v,

or

V=38l =— (' (7t~ 361 D+ (,8+-3ad, Yo,

Substituting this equation into (3,4), and transvecting again with v, we get
0=(1-22)(V,8+3al) —u'(V,8+3al Du,—v'(V B+3al v,

by virtue of (2.6).
Substituting again this relation into (3.4), we fine

(3.5) 2y f+Alhgk ) —hypley)=0.
On the other hand, covariantly differentiating the second equation of (2.6), we
obtain
(Vo' +hy; V'
=(V‘.B)u-'-(V,,a)v-+ﬁV,u-—aVkv-

Taking the skew-symmetric part of this equation with respect to 2 and j, and
substituting again (2.6) and (3.2), we also find
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(hhkﬂ—hj,ku)f"=(v,ﬁ+3a!,)u—(Vjﬁ+3alj)u‘
by virtue of (2.2), (2.4), (2.5) and (2.6).
Since
Uy = o) f*u' =0
and
Chykjy— k) f v =0,
from the above relations, we can verify
Uyl =yl =0,
Transvecting this equation with f‘i. we have
(3.6) hykf+hik,=0
by using of (2.5) and (2.6).
Comparing (3.6) with (3.5), we find
BT Iy ™+ Ahyk =O0.

Similarly, taking the covariant differentiation of the last equation of (2.6), we
obtain

(Vv +h,V
==(V@u;— (V Bv;—aVu,— BV w;
Taking the skew-symmetric part of this relation with respect to £ and 7, and
substituting (2.6) and (3.2), we get

T B TON e B W)
=~ (V,@— 381 u;+(V a2 —381 ),
— (VB+3al)v;+(V,8+3al v,
by virtue of (2.2), (2.4), (2.5) and (2.6).
Comparing this equation with (3.4) and taking account of (3.5) and (3.6), we
also get '
(3.8)  kyky ™+ Ay k=0,
From (3.7) and (3.8), we can easily see that
(B.9) Iyhi =kyk/.
On the other hand, taking the covariant differentiation of (2.5) and taking
account of (2.2), (2.4), (2.5) and (2.6), we have
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(3.10) R/=R=-4(a’+§
and

@) Rg'=%u, Ro=R,

by virtue of (3.1).
Moreover, transvecting (3.7) with f/ and using of (2.2), (2,4), (2.5) and
(2.6), we get

(3.12) R;= LZ?_ (ujuitojo) +R f;'f, -
Thus we have

PROPOSITION 3.1. Let the submanifold M of codimension 2 of a (2n+2)-
dimensional Euclidean space be such that H and K anti-commute with f, where H
and K are Weingarten maps wiih respect to the normals C and D respectively. If
A is constant different from 0 and 1, then the relation

R/f +f/R}=0,
that is, Ricci tensor R of M anti-commute with f on M.
From (3.12), we can see that
R R\R =" R,R,
by virtue of (3.9), (3.10) and (3.11).

Thus the only eigenvalue of the tensor RJ_" is ﬁg- or 0. We denote the eigen-
spaces corresponding to the eigenvalues g— and 0 by V _r and V|, respectively.
Since the multiplicity of % is 2, V %_ (X) at x and V0(2X) at x, X=M, define
respectively 2-and (2n-2)-dimensional distributions V' R and V,over M. They are
mutually orthogonal and their Whiteney sum is T(lfl).

Now, we assume that

(3.13) V,R;=0,

(that is, Ricci tensor is parallel)
on M.

Then R is constant on M. i
Let p" and ¢" be two arbitrary eigenvectors of Rj‘ with constant eigenvalue

"§‘¢0' then we have
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(3.14) Rj'b"z—g—p,-. R/¢ =-}—g-qi.

from which
R‘-"V_,-p"=-12€—v o
R}Vg=R v,
Thus

RV ~aV D =B/ 4 -7, pH

that is, if p" and q" belong to V ?n; , then [p, q]” also belong to V& . Consequenly
2

the distribution ¥V g _is integrable.
2
Similarly we can prove that the distribution V) is also integrable.

Differentiating the first eauation of (3.14) covariantly, we get
it R
R; Vjp,,=—._;- Vjp,-,
from which

i R

(Vjpl'-v,'ﬁj)-
Transvecting this equation with qi and using of (3.14), we obtain
] R
RHGVp)—-F-a'Vp =4 W 5=V ).
from which
t, s o AT
R (@ Vp)=-5(a Vb,

or

RMaV pH=F-'v pH,

which shows that if »" and ¢" are two arbitrary vectors belonging to the distri-
bution V _g; , then q'V,pk also belongs to the distribution V % , Thus each inte-

gral manifold of V _2.:2_ is totally geodesic in M.

Similarly we can verify that each integral manifold of ¥ is totally geodesic in

M.
Moreover, if pi and ' belong respectively to V g and V, we have
2

0=@'V, R P'=u'V (R}P) - R W'V P

=R}V, P+ E o v P
and



On anti-commute (f, g, u, v, 2)-structures on submanifolds of 181
codimension 2 in an even dimensional Eucliden space.

0=(P'V,RHw' =PV (R}w) - R}'PV '

= —R,-h,wa".
that is,
R R, j
=5-@'V,P) - 5-@'V,P) R

=—12?-(w'V,P" Dor
and

0=% (PVuh) R,
vector of the form qh being written as (q*)k§_+(q")o. where (q")_g_ and (q")n
respectively denote the V _15_ and V|, components of q".

Consequently we have

@'V,P")=0, that is, w'V,P'E€V &
and i

(PVa") R =0, that is, PVu'€EV,

Thus the distributions V & and V, are parallel. So, using de Rham’s decompo-
2
sition theorem, we have
THEOREM 3.2. Let M be a complete submanifold of codimension 2 in a (2n+2)-
dimensional Euclidean space such that H and K anti-commute with f, where H and

K are Weingarten maps with respect to the normals C and D respectively. If A is
constant different from 0 and 1 and

V,R;=0,

(that is, Ricci tensor is parallel)
on M, then M is the product of M*XE**~? of a two-dimensional manifold M* and
a (2n—2)-dimensional Euclidean space f riat

§4. Sumanifolds of codimension 2 in a locally Fubinian manifold.

A Kihlerian manifold is called a locally Fubinian manifold if the holomorphic
sectional curvature at every point is independent of the holomorphic section at the
point. In this case, its curvature tensor is given by -

R HMA':K(GIMGM— GuxGu2+FuxF#1_ FMFUJ i 2Fw.r.le)'
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x being a constant [1].
Substituting this equation into the equations of Gauss, Codazzi, Ricci respecti-
vely;

2
R0 BB/ BBy = Ryjip— i+ hjshyi— kit i
2
R, By'B"B{C =V h;;=V =L+ by,
A
R, BB B D =V iV it L,
R, aBYBIC D =V =V 1 bk !~k
we find [3]
(4.2) kaﬂ—vlkﬁ-l-!.kﬂ—ljhh =K(v‘fﬁ—vjfﬁ—20‘fu),
Taking the similar method to the first equation of (2.6) as in the previous
section and using of (2.2), (2.4),(2.5) and (4.1), we find

WD) 2nyh Ak — e+ £ A~ up) 20— 251, )
=V =36l u;— (V=31 Juy, +(V, 8+ 3adv;— (V,;8+3al v,

Transvecting (4.4) with #’ and taking account of (2.6), we have
(4.5) Vya—38l=—=z W' V,a=38l)uy+u'(V,B+3alyu)~32kv,,
Substituting (4.5) into (4.4) and transvecting with ¢/, we get
(4.6) V,B+3aly=—2 (W (V,+3a1 D, +0'(V,6+3ad ;).
From (4.5) and (4.6), we can see
A.T) iyl f* + Ak — b)) + 6 (AU~ w0 —2(1- 251,

=3 (u;— o) = (Vya— 3Bl )u; — (V;a — 361 D,

+(V,B+3al v~ (V,8+3edl Dv,

Taking also the similar way to the last equation of (2.6) as in the previous
section and taking account of (2.2), (2.4), (2.5) and (4.2), we obtain

(4.8) 2kylf” + Ak} = by )+ KAy~ w0 — 201 - A1)}
= -Slx(u,v}--ujv,)
by virtue of (4.7),
From (4.8), we can see
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0=6A(1-HKs*
by virtue of (2.6). It means that =0 on M.

Thus we have
THEOREM 4.1. Let a submanifold M of codimension 2 of a locally Fubinian mani-
fold B be such that H and K anti-commute with f, respect to the normals C and
D respectively. If A is constant different from 0 and 1, then there is no such a M
unless M is locally Euclidean.
Kyung-pook University
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