ON A PROOF OF R. A. HUNT
By C. J. Mozzochi

Let fELl (==, ). Let S, (x:f) be the n'h partial sum of the Fourier series for f.

Let M : I? (—x, z)—-class of extended real valued functions on (—z, 7).
Mf(x)=sup {|S,(x:f)] : |n| =0}

Let fD denote the 2z-periodic extension of f with domain (—4=, 47).

AT _int
Let S3Gxi f: wh=P.V. [ LD x"_)f ® gt ; 1n1>0.
i

Let M* : L’(—#, z)—-class of extended real valued functions on (—=, 7).
M* f(x)=sup{|S¥ (x; f: w¥))|: |n|=0}

On page 237 in [2] Hunt states without proof “It follows that (%) [[M* fllj<

A\ fi% for all fEL(p,1), A,<const (p/(p—1))B, 1<p<oo."

The only proof (produced later in this paper) of (%) that I know of is based
on a delicate Lorentz space extension (communicated to me by C. Preston) of the
very non-elementary theorem of M. Riesz which states that the Hilbert transform
is of type (p, p) for 1<p<co,

In this paper (maintaining the use of his Lorentz space interpolation techniques
together with only very elementary real variable techniques) I modify Hunt’s
proof in such a way as to eliminate (%) and the need for the theorem of M.

Riesz to establish Theorem 1 in [2]. A similar modification will yield Theorem 2
and Theorem 3.

LEMMA 1. Mf(x) <ECIfl p—{—M* f(x)) for almost every % in (—zm, n) for
1<p<oo where E>0 is a constant independent of f in z (== &)
An exhaustive proof of this lemma is given in [3].

LEMMA 2. (Carleson-Hunt). Let FC(—n, =) and let Xy be the characteristic
Sfunction of F. For every y>0 and 1<p<co we have

m{xE(—x, m)|M*Lp(2)>y}<B} y~'mF.
This is established in [2].

LEMMA 3. Let FC(—=x, n) and let Xy be the characteristic function of F. For
every y>0and 1<p<co we have
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m{xE(~n, 1)|MLL()>y}< (1+27) (EB,Y y™" mF
where E is of Lemma 1 and Bp is of Lemma 2.
PROOF. This follows from Lemma 1 and Lemma 2 in the following way:
ML) SEM*Xp(x)+(mF)V?) a.e. in (—m,7).
M| mP)P>5)={3 . IZEND
m{x| (mF)V> 9}y <22(1/mF)mF
m{x|(mF)V7>y}y<2:B) y~*mF
{2 | M* XL () + (mF)Ve> y}C{x | M* %g(2)> y/2Y Uz | (mF)V/2> y/2}
m{x| M* % p(2) +(mF)VP> y} < (1+27) (2Bp)’y—PmF. Hence
m{x| M%(x)> y}<(1+27)(2EB)'y~? mF.

LEMMA 4. Let FC(—n, n) and let % be the characteristic function of F. Then
Mg oo <By gl 1<p<oo where B,=(1+21)/?(2EB)

PROOF. This is an immediate consequence of Lemma 3 and the fact that
(mF)VP=|2%gl3, and | MXg)j=sup { (A3, (3] Py15>0}.

LEMMA 5. For every simple function f in L(p,1) for 1<p<oo
[Mfljo= Const(p/p—1) B’ pTlfH:l

PROOF. This follows immediately from Lemma 4. For details see the argument
on the bottom of page 236 in [2] (replace M* by M in the argument).

Let a denote any simple function with domain (—#, #) and range in {0, 1, -,
N}. We say « is an Nth order simple function.

Let T f(2)=Sa(x(x; f) for x€(—=, 7).

Clearly, T, is linear for every Nth order simple function, and for 1<{p<co
IT o f )l pooC, |Ifll 3 for every simple function f in L(p, 1) and for each Nth order
simple function &« where Cp=Const (p/p—1B,

LEMMA 6. Let f€L(p, 1) 1<p<co. Lel @ be any Nth order simple function.
There exists a sequence of simple functions {fYCL(p, 1) such that |f,| pn—|fln
and T, (f-f,)(x)—0 for x&€(—n, 7).
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PROOF. This is an immediate consequence of the Lebesgue dominated conver-
gence theorem and (2.4) in [1].

LEMMA 7. For 1<p<oo T, fllpc<C,|IfIly;, for every f in L(p, 1) and for each
Nth order simple function c.

PROOF. Fix f €L(p,1). Let {f,} be the sequence of Lemma 6. Then |T,f,(%)!
—|T,f(x)| for x in (—=, 7). Hence by Fatou's lemma we have (Taf)**(i)slirg-

(Tof,) *(®) and |T,fllpo<lim|Ta flpec. The result now follows from Lemma 5.

LEMMA 8. |Mfly.<C; I}y for all f in L(p,1) 1<p<oo.

PROOF. Fix f; in L(p, 1). Clearly there exists an Nth order simple function «
such that |Tq,fo(x) | =Myfy(x) for all z€(—x, 7). Hence |Myfylpeo<C’llfollp1*
But M f(x)—=Mfy(x) for each xin (—=, 7); so that by Fatou’s lemma (Mf)**
(O<lim(Mf,)**(#) and the result follows.

THEOREM 1. ]IMﬂfp:;Kp[lf]lp 1<p<oo,
PROOF. This is an immediate consequence of Lemma 8 and the interpolation

theorem found in [1].

To establish (%) we use the following Lorentz space generalization of M. Riesz
theorem

Let k(=)= thég% dt for x in (—m, 7).

LEMMA 9. ||All poo<A,|IfI}; For 1<p<oo,

PROOF. By (1.8) in [1] it is sufficient to show( :) ”h”pooSAp”f Hp. Since the
Hilbert transform is of type (p, p) it is of weak type (p, p). Hence y[2,(3)] "
<4,lfl, for all y>0. Hence supy [2,(DIVP< A fll,; so that by (1.7) in [1]

3

( : )follows.

PROOF of (.
Let Tﬁf(x)zsz(,)(x; fi; w_y) for x in (==, =#). It is sufficient to establish
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Lemma 6 for T% . Clearly, for any Nth order simple function

—int
IT% FlpooSZ | [ EBFWD gy, But by Lemma 9 we bave that the right side

is majorized by (N+1)4, |lfls1. Let {f,JCL(p.1) be a sequence of simple functions
such that |If, —fllp—0. By (1.7) in [1] T': f, converges in measure to T; ¥
Hence there exists a sequence {fy} such that almost everywhere T* (f—f, ) (x)—0.

REMARK 1. If fin L log L log log L, then the Fourier series for f converges
almost everywhere to f. This is due to L. Carleson, and it is based on Lemma
3. The proof is presented in detail for the Walsh orthogonal system on page 563
—567 in [5]. It is easy to see that LE log L log log L DL’ for 1<p.
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