RELATIONS BETWEEN WIENER'S AND ROYDEN'S P-COMPACTIFICATIONS
OF A RIEMANNIAN MANIFOLD

By Cecilia Wang

Royden’s P-compactification R*,;, of a Riemannian manifold R was introduced
by Nakai and Sario [6], and further investigated by Kwon, Sario, and Schiff
(4], [5]. Wiener's P-compactification R*yp of a Riemann surface R was first
«discussed by Tanaka [10] and, more generally, Wiener's compactification of a
harmonic space, by Constantinescu and Cornea [2]. In the present note we relate
Wiener's and Royden’s P-compactications of a Riemannian manifold by a contin-
uous mapping ¢ from R¥*yp onto R*pp which maps Wiener's P-harmonic bound-
ary Apyp onto Royden’s P-harmonic boundary App except possibly for the P-
singular point sp. We show that the fiber of sp is contained in Ayp if and only
if R is P-hyperbolic. This observation has some interesting conssquenczs: the
P-elliptic measure of R has a finite energy integral if and only if j;e Pdv<co; a
P-hyperbolic Riemannian manifold R belongs to & gy if and only if Ay p={sp}.

For fundamentals of the P-singular point we refer the reader to [6] and [3].

1. Let R be a noncompact Riemannian manifold of dimension #>2. For a fixed
nonnegative function P#£0, we are interested in the class P(R) of P-harmonic
functions on R, that is, C solutions of the elliptic partial differential equation

Au=Pu.
Here 4 is the Laplace-Beltrami operator given by
Au=—*d*du,
Let {Q} be a regular exhaustion of R. The sequence {hlp' Q} of nonnegative

continuous functions on R with kIP’Q=1 on R—-Q and kl‘P‘DGP(Q) is monotone
decreasing, and thus converges as 2—R. The limit ep is called the P-elliptic
measure of R. A manifold R is, by definition, P-parabolic or P-hyperbolic accord-
ing as ep=0 or> 0. The class of Riemannian manifolds on which there exist no
bounded P-harmonic functions is identical with the class of P-parabolic manifolds
(cf. [7] and[8]).
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2. A function on R is called P-harmonizable if for any regular cxhaustion {Q}
of R, the sequence of the continuous functions h fF'Q with h,P'Q= f on R—Q and

h"“€P(Q) converges as Q—R. The limit kf is P-harmonic. Denote by N,(R)
the family of bounded continuous P-harmonizable functions on R, and by
N PA (R) the family of functions fFEN p(R) with hf‘p =0. Consider the N p-compact-
ification R*y, of R, defined by the following properties: R*,, is a compact
Hausdorff space in which R is a dense subset; every fEN(R) has a continuous
extension to R¥,,: and Np(R) separates the points of R*,,. Such a compactifi-
cation R*,, of R always exists and is unique up to a homeomorphism (e.g. [1])..
In particular, R*y, can be chosen as the totality of nonzero multiplicative linear
functionals on Np(R) with the weak * topology (e.g. [9]1). We shall call R*,,
Wiener's P-compactification of R,R*,,—R Wiener's P-boundary of R, and the
subset
Anp={xER*\p| f(x)=0 for all fEN,,(R)}

Wiener's P-harmonic boundary.

The set 4y enjoys the following properties related to the family of PB-functions:

(i) REpp if and only if Ayp=9.
(ii) Np(R)=PB(R)®Np,(R).
(iii) A PB-function on R takes on its nonnegative maximum and nonpositive
minimum on Ayp.
(iv) The vector space PB(R) is n-dimensional if and only if Ay, consists of n
points,

The proofs of (i)-(iv) are analogous to those in the case of harmonic functions
(cf. e.g. [91):

3. Denote by Mp(R) the family of bounded Tonelli functions f on R with
finite energy integral

Ex(H)=[ dinsdf+ [ Pfia,
and by Mp,(R) the family of BE-limits f of functions in Mz(R) with compact
supports, that is, f=C-lim f, and lim E(f—f,)=0 on R, where {f,)} isa
n n

sequence of uniformly bounded functions in Mp(R) with compact supports, and
C-lim stands for uniform convergence in compact sets. The M p-compactification

R*, is called Royden's P-compactification. Royden's P-harmonic boundary is the
subset
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Ay p={xER* ), f(x)=0 for all fFEM,(R)}.

A point sp in R*,, is called a P-singular point if cvery function fEMp(R)
vanishes at sp. It exists if and only if f gPdv=co(cf. [6]). Since Mp(R) separates
the points in R¥,,,, it is unique. Clearly spEAp.

The P-singular point sp will play an important role in our study.

By way of preparation we first observe:

PROPOSITION. The following relations are valid:
() M,(R)CNp(R), -

(i) Mpp(R)=Mp(RINN py (R).

PROOF. Let {Q} be a regular exhaustion of R, and fEM(R). Since the

sequence {hfP’Q} converges to h}; in the BE-topology, we have fEN p(R). For
every fEMp(R),

h}’(x)=fAmf(t)K<x. Ddp(t)
with K(x,¢) the P-harmonic kernel, and g the P-harmonic measure with center
at a fixed point (cf. [5]). Thus FEMp(R)NNp,(R) if and only if f=0 on 4y,
and therefore if and only if fFEM , (R).

4. By the above proposition, every fEM(R) can be continuously extended to
R*yp. Thus R*y, can be divided into equivalence classes of points by the follow-
ing equivalence relation: z~y if f(x)=f(y) for all FEM,(R). The quotient
space R¥*,,/~ with the quotient topology is homeomorphic to Royden's P-com-
pactification (cf. [3], [9]). In view of the natural projection p of R*,, onto the
quotient space R¥*yp/~,

we have:
There exists a conlinuous mapping o of R*.p, onto R*,, such that p is the
identity mapping on R and f(x)=f(p(x)) for all xER*y, and all fEM(R).

We shall refer to the inverse image of a point xER*,,, as the fiber of x.

5. Since Ayp and Ay are closely related to the structure of PB and PBE
respectively, the nature of the mapping p on Ay is important. Since the P-sin-
gular point s, does not affect the dimension of the vector space PBE it is natural
to ask whether or not the set p—1(s,) belongs to Ay P
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THEOREM 1. The fiber of the P-singular point sp is a subset of Wiener's
P-harmonic boundary Ayp if and only if the base manifold R is P-hyperbolic.

PROOF. Since the P-parabolicity of R implies 4yp=¢, the necessity is trivial.
To prove the sufficiency, we assume to the contrary that p—1(sp)ZAyp that
is, sp,€0(Ayp). Since Ayp is compact and nonempty, so is o(Ayp). One can find
an fEMp(R) with flp(Ayp)=1. By the orthogonal decomposition M (R)=PBE
(RY®Mp, (R), the PBE-projection Jf of f has value 10n o(Ayp). Since f(o(x))
=f(x) for all xER*y, and all FEMp(R), hf | Ayp=1. In view of the maximum

principle for PB-functions on Ayp, We see that kf is the P-elliptic measure ¢p of R,
Thus Ey(ep) <co and

2 . .PQ
JePCep) dv=[Pe, lim " dv <oo,
By the monotone convergence theorem,

3 P,Q
DE? RPe Pk 1 dyv <oo,

Choose a regular subregion £, such that
P,Q,
f gleph — dv <co.

i X 2
Since Pep is nonnegative and hIP =1 on R—-Qy,
f s Pepdv oo,
By the continuity of Pep fa Pepdv<oo, and therefore
RP (] P dv <°°-
By repeating the same argument we obtain

f RP dy <co,
This implies that the P-singular point s, does not exist, a contradiction.

6. Theorem 1 has the following conseguences.

THEOREM 2. On a P-hyperbolic manifold R, the following relations are equivalent:
@ Dalep)+[,, Plep)* dv<oo,

(i) [ Plep)’® dv <o,

i) [, Pdo <co.
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PROOF. (i)=(ii) is trivial and (ii)=(iii) follows from the proof of Theorem 1.
For (iii)=(i) we refer to [8].

COROLLARY. If [P(ep)’dv <oco, then Dy(ep) <oo.
THEOREM 3. On a P-hyperbolic Riemannian manifold R, o(Ayp)=Dype

PROOF. Since M, ARICN, (R), we have p(Aynp)TAyp by the definitions of
P-harmonic boundaries and the mapping p. It remains to show that Ay p—p(Axp)
=¢. Suppose Ay p—0(Ayp)7#p. Since s,Ep(Ayp) by Theorem 1, one can find a
point *E€Ayp—0(Ayp) and a function FEM p(R) such that 0<f<1, f(x)=1, and
Sf=0 on p(Ayp) (cf. [4]). Thus the PBE-projection  of f coincides with f on Ayp.
Since #(x)=f(x)=1,4>0 on R. On the other hand #(Ayp)=u(p(Ayp))=0, and
therefore #=0 on R, a contradiction.

Note that the P-singular point s, does not exist if f gPdv<co.

COROLLARY 1. If [pPdv<co, then o(Ayp)=Ayp-

COROLLARY 2. If REZpy and [ Pdv=co, then the dimension of the vector
space PBE(R) is strictly less than the dimension of PB(R).

PROOF. If REZpp and [pPdo=co, then e,€PB(R) and e,&PBE(R).

COROLLARY 3. If REC p, then REC ppy if and only if Ayp={sp).

COROLLARY 4. A manifold REC pgp—& pgif and only if Ayp=p(Axp)={sp)
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