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Royden’ s P.compactification R*MP of a Riemannian manifold R was introduced 
by Nakai and Sario [6] , and further investigated by K、von， Sario, and Schiff 
[4], [5] . Wiener’s P.compactificatiqn R*N P of a Riemann surface R was first 

-discussed by Tanaka [10] and, more generally, Wiener’ s compactification of a 
harmonic space, by Constantinescu and Cornea [2]. ln the present note we relate 
Wiener' s and Royden’ s P .compactications of a Riemannian manifold by a contin. 

uous mapping fI from R ‘NP onto R ‘MP which maps Wicner’ s P.harmonic bound. 
ary f:!.N P onto Royden’ s P.harmonic boundary f:!.MP except possibly for the p . 

singular point sp. We show that the fiber of sp is contained in f:!. ,yp if and only 
if R is P.hyperbolic. This observation has some interesting consequenc03 : the 

P.e꾀e마배11빼l 

P.hyperl마bo이마lic Riemann삐n띠lia때n ma없n띠1니iαfo이I떠d R belongs to t7 PBE if and only if f:!.MP = { sp}' 

For fundamentals of the P .singular point we refer the reader to [6] and [3]. 

1. Let R be a noncompact Riemannian manifold of dimension m능2. For a fixed 
nonnegative function P졸0， we are interested in the class P(R ) of P .harmonic 
functions on R , that is, d- solutions of the elliptic partial differential equation 

f:!.u=Pu. 
Here A is the Laplace.Beltrami operator given by 

f:!.u= - ‘ d‘du. 

Iιet {D} be a regular exhaustion of R. The sequence {ht D} of nonnegative 

'continuous functions on R with htD= l on R-D and htDEP(D) is monotone 
<Iecreasing, and thus converges as D• R. The limit e P is call어 the P.elliptic 
measure of R. A manifold R is, by definition, p.parabolic or P.hyperbolic accord. 

ing as ep三o or > O. The class of Riemannian manifolds On which there exist no 
bounded P .harmonic functions is identical with the class of P.parabolic manifolds 
(cf. [7] and [8]). 
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2. A function on R is 띠llcd P .harmo,zizable if for any regular cxhaustion (Q), 
p.O ... : .. 1.. 1. p.O of R, thc sequence of thc continuous functions Iz; ‘vith Iz; ''' =1 on R-Q ancÞ 

P. D ,- n r r\' ____________ r'I n 'T't..._ 1:_: .. I.P 11/"" EP(Q) converges as Q• R. The limit hi is P.harmonic. Denote by N p(R) 

thc family of bounded continuous P-harmonizablc functions on R , and by 

N p ~ (R ) t he family of functions IEN p(R) with ，，/νf/fP르댄0α. Con떼1S 

if“lκcation R‘「긴얀‘λN、v’，rp 0아f R ’ dcfined by lhe fo이110\‘w…vmg proφpe얀rπ띠t디1e않s : R카N P 15 a compact 
Hausdorf“f spac잉em 、w야l사‘h니ic이h R is a dense subset; every IEN p(R) has a continuous 

exlcnsion to R*,vp; and N p(R) separatcs thc points of R‘ ,vp' Such a compactifi. 

cation R*NP of R always cxists and is unique up to a homeomorphism (e. g. (1)). 

ln partic띠ar， R*NP can be chnsen as the totality of nonzero multiplicativc linear 

functionals on N p(R) with thc weak" topology (e. g. [9]) . We shall call R",vp­

Wùmer’s P.compactilication 01 R , 싼'NP-R Wiene-i’ s P'bollndaη of R , and the 

subset 

Ll.,vp={xER*NPI/(x)=O for all IENn/R)} 

Wùmer’s P -Izarmonic bOl(,ndary. 

The set l1,yp enjoys the following properties related to the family of PB.functions: 

(i) REι7 PB if and only if Ll.,yp=rþ. 

(ii) N p(R)=PB(R)(f)N n. (R) . 

(iii) A P B-function on R takes on its nonnegative maximum and nonpositive 

minimum on c::'NP' 

(iv) The vector space PB(R) is n.dimensional if and only if Ll.,vp consists of n 

points. 

The proofs of (i)-(iv) are analogous to thnse in the case of harmonic functions. 

(cf. c. g. [9]) . 

3. Denotc by M p(R) the family of bounded Tonelli functions 1 on R with, 

finite energy integral 

ERω=Jp^얘'l+fRPf*l， 
and by M P", (R) the family of BE.limits 1 of functions in M P(R) with compact 

suppor압， that is, I=C-lim 1" and lim ER(f-자)=0 on R , where {f,,} is a-

sequencc of uniformly bounded functions in M p(R) with compact supports, and 

C-lim stands for uruforrn convcrgcnce in compact sets. The M p , compactification 

R‘ MP is callcd Royden's P-COllψactzjicatioι Royden’ s p .lzarmonic bOtl1Zdary is the 

subset 
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6 .Mp={xER*MP lf (x)=O for all fEMP1>.(R )} 

A point S p in R* MP is call떠 a P-si’IjJular poi찌 if cvery function fEM p(R) 

vanishes at s p- It exis앙 “ and only if .l ePdv=∞(cf_ [6])_ Since M p(R) separates 

thc points in Rη，IP' it is uniquc. Clearly spE6MP 

The P-singuJar point sp WiIl play an important role in our study. 

By way of preparation wc first observc: 

PROPOSlTION_ The following relalions are valid: 

(i) Mp(R)ζNp(R)， C' 

(ü) MpD, (R )=M p(R)n N P1::. (R ) . 

PROOF. Let {Q} be a reg띠ar exhaustion of R , and fEM p(R). Sincc the 

sequen야 {까P， D} converges to hJ i11 the BE-topology. we have fEN p(R ). For 

evcry fEM p(R ) , 

"J(x)=J 6MPf(I)K(x. 써μ(1) 
with K (x.l) the P-harmonic kerncl. and μ thc P-harmonic measure with center 
at a fixed point (cf. [5])_ Thus fEMp(R ) nN pD,(R) if and only if f三o on ~MPO 

and therefóre if and only if fEM PD, (R ). 

4. By the above prol야)Sition. every fEM p(R) can be continuously extcnd어 to 
R‘NP. Thus R하P can be divided into cquivalence cl잃ses oÍ points by the follow­

ing cquivalence relation: x-y if f (x)=f (y) for all fEMp(R ) . The quotient 

space R하p/- with the quotient topology is homeomorphic to Royden’ S P -com­

pactification (cf. [3]. [9]). In vicw of the natural projection p of R하p onto thc 

quotient space R채p!-. 

、ve have: 

There exisls a contilluous mapping p of R*NP onlo R*MP such Ihal p is tlU! 

identily mapping on R and f (x)=f(p(x)) for all xER*NP and a/l fEMp(R )_ 

We shall refer to the inversc imagc of a point xER* MP as the fiber of x. 

5. Since 6 NP and 6 MP are closely related to the structure of PB and PBE 

respectively. the nature of the mapping p on 6 NP is important. Since the P -sin­

gular point s P does not affect the dimension of the vector space P BE. it is natural 
to ask whether or not the set p- l(sp) belongs to 6 .,p. 
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THEOREM 1. The fiber of the P-singnlar point sp is a subset of Wie.ιer’s 

P-harmonic boundary è;NP if and only if the base manifold R is P -hyperbolic. 

PROOF. Since the P-parabolicity of R implies JNP=rþ, the necessity is trivial. 
To prove the sufficiency, we assume to the contrary that p-1(sp)(lè;NP' that 

is, sp중P(è;NP)' Since è;NP is compact and nonempty, so is P(è;NP)' One can find 

an fEMp(R ) withflp(è;NP)= 1. By the orthogonal decomposition Mp(R )=PBE 
P ( R)g)M PA ( R ), the PBE-projection hí of f has value 1 on P(è;NP)' Since f(p(z )) 

=κx) fo~ all xER"NP and all iEMp(R ) , h! I è;NP= 1. In view 아 the maximum 

pr다rin따찌lκ띠c디lψpl야e fo아r PB-Ílω‘unc 

Thus ER(ep야)<∞ and 
r ..... , , 2 . r.... . P, D 

RP(ep) du= RPep E잃 h;'- dv <∞. 

By the monotone convergence theorem, 
r r!o_ ,_ p , a 

lim I ]e)',-'- dv <∞. Q:ÏÎ J R' "p', 
Cho∞e a regular subregion Qo such that 

r ..... . P， O。
I _Pe씨 'dv <∞. 

‘ J R' "p"l 
P.Dø 

Since Pep is nonnegative and h1 ’ = 1 on R-Qf)o 

j;e-Q.P샘v <，∞. 

B바y th야econ따빼lt and therefore 

j자;↓，Pep dv’ 〈∞.
By repcating the same argument we obtain 

가P dv <∞ 
This implies that the P-singular point s P does not exist, a contradiction. 

6. Theorem 1 has the following consequenccs. 

THEOREM 2. 0η a P -hyperbolic manifold R , the following relalions are eqμ'Ívalet，μ: 

(i) DR(ep) +!R P (ep)2 dv<∞， 

(ii) 싸P(양i dv <∞， 

(iii ) !R Pdv <∞ 
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PROOF. (i) =>(ii) is trivial and (ii)=>(iii) follows from the proof of Theorem 1. 

For (iii) => (i) we refer to [8). 

COROLLARY. JI !RP(epidv <∞， then ÐR(ep) <∞· 

THEOREM 3. On a P.hyþerbolic Riemannian manilold R , P(t!.NP) = t!.MP" 

PROOF. Since M Pð. (R )CN Pð. (R) , we have P(t!.NP)C t!.MP by the definitions of 

P.harmonic boundaries and the mapping p. lt remains to show that t!.MP-P( t!.NP) 

=ø. Suppose t!.MP-P(t!.NP)'얘. Since spEp( t!.NP) by Theorem 1, one can find a 

point xEt!.MP-P( t!.NP) and a function IEMp(R) such that 0";/";1,/(.<)=1 , and 

f三o on P( t!.NP) (cf. [4)). Thus the PBE' projection U of 1 coincides with lon t!.MP" 

Since ,,(x )=/ (x)= I,“> Oon R. On the other band U( t!.NP)=U(P(t!.NP)) =0, and 

therefore u三o on R , a contradiction. 

Note tbat the p.sing때 point S P does not exist if 싸Pdv<∞ 

COROLLARY 1. JI가Pdv<∞， lheη P(t!.NP)깅MP 

COROLLARY 2. JI RειPB 쩌 !R Pdv=∞， tlze’‘ lhe dimension 01 the veclor 

space P BE(R) is slrictly less tha.‘ the dimensio’‘ 01 PB(R). 

PR∞F. If R훌t7 PB and !RPdv=∞， then 양EPB(R) and epePBE(R). 

COROLLARY 3. JI Ret7pB, then REt7 PBE .ï and only if t!.MP={Sp}' 
t . 

COROLL뼈Y 4, A manilold REt7PBE - t7pB il and only il t!.MP= P(t!.NP)={sp}' 
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