RELATIONS BETWEEN WIENER'S AND ROYDEN'S P-COMPACTIFICATIONS OF A RIEMANNIAN MANIFOLD

By Cecilia Wang

Royden's P-compactification R^*_{MP} of a Riemannian manifold R was introduced by Nakai and Sario [6], and further investigated by Kwon, Sario, and Schiff [4], [5]. Wiener's P-compactification R^*_{NP} of a Riemann surface R was first discussed by Tanaka [10] and, more generally, Wiener's compactification of a harmonic space, by Constantinescu and Cornea [2]. In the present note we relate Wiener's and Royden's P-compactications of a Riemannian manifold by a continuous mapping ρ from R^*_{NP} onto R^*_{MP} which maps Wiener's P-harmonic boundary Δ_{NP} onto Royden's P-harmonic boundary Δ_{MP} except possibly for the P-singular point s_P . We show that the fiber of s_P is contained in Δ_{NP} if and only if R is P-hyperbolic. This observation has some interesting consequences: the P-elliptic measure of R has a finite energy integral if and only if $\int_R P dv < \infty$; a P-hyperbolic Riemannian manifold R belongs to \mathcal{O}_{PBE} if and only if $\Delta_{MP} = \{s_P\}$. For fundamentals of the P-singular point we refer the reader to [6] and [3].

1. Let R be a noncompact Riemannian manifold of dimension $m \ge 2$. For a fixed nonnegative function $P \not\equiv 0$, we are interested in the class P(R) of P-harmonic functions on R, that is, C^2 solutions of the elliptic partial differential equation

 $\triangle u = Pu$.

Here △ is the Laplace-Beltrami operator given by

$$\triangle u = -*d*du$$
.

Let $\{\Omega\}$ be a regular exhaustion of R. The sequence $\{h_1^{P,\Omega}\}$ of nonnegative continuous functions on R with $h_1^{P,\Omega}=1$ on $R-\Omega$ and $h_1^{P,\Omega}\in P(\Omega)$ is monotone decreasing, and thus converges as $\Omega\to R$. The limit e_P is called the P-elliptic measure of R. A manifold R is, by definition, P-parabolic or P-hyperbolic according as $e_P\equiv 0$ or >0. The class of Riemannian manifolds on which there exist no bounded P-harmonic functions is identical with the class of P-parabolic manifolds (cf. [7] and [8]).

The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G20, University of California, Los Angeles.

2. A function on R is called P-harmonizable if for any regular exhaustion $\{\Omega\}_r$ of R, the sequence of the continuous functions $h_f^{P,\Omega}$ with $h_f^{P,\Omega}=f$ on $R-\Omega$ and $h_f^{P,\Omega}\in P(\Omega)$ converges as $\Omega\to R$. The limit h_f^P is P-harmonic. Denote by $N_P(R)$ the family of bounded continuous P-harmonizable functions on R, and by $N_{P\Delta}(R)$ the family of functions $f\in N_P(R)$ with $h_f^P\equiv 0$. Consider the N_P -compactification R^*_{NP} of R, defined by the following properties: R^*_{NP} is a compact Hausdorff space in which R is a dense subset; every $f\in N_P(R)$ has a continuous extension to R^*_{NP} ; and $N_P(R)$ separates the points of R^*_{NP} . Such a compactification R^*_{NP} of R always exists and is unique up to a homeomorphism (e.g. [1]). In particular, R^*_{NP} can be chosen as the totality of nonzero multiplicative linear functionals on $N_P(R)$ with the weak * topology (e.g. [9]). We shall call R^*_{NP} Wiener's P-compactification of R, $R^*_{NP}-R$ Wiener's P-boundary of R, and the subset

$$\triangle_{NP} = \{x \in \mathbb{R}^*_{NP} | f(x) = 0 \text{ for all } f \in \mathbb{N}_{P \wedge}(\mathbb{R})\}$$

Wiener's P-harmonic boundary.

The set Δ_{NP} enjoys the following properties related to the family of PB-functions:

- (i) $R \in \mathcal{O}_{PB}$ if and only if $\triangle_{NP} = \phi$.
- (ii) $N_P(R) = PB(R) \oplus N_{P \wedge}(R)$.
- (iii) A PB-function on R takes on its nonnegative maximum and nonpositive minimum on \triangle_{NP} .
- (iv) The vector space PB(R) is n-dimensional if and only if \triangle_{NP} consists of n points.

The proofs of (i)-(iv) are analogous to those in the case of harmonic functions (cf. e.g. [9]).

3. Denote by $M_P(R)$ the family of bounded Tonelli functions f on R with finite energy integral

$$E_R(f) = \int_R df \wedge \star df + \int_R Pf^2 \star 1$$
,

and by $M_{P\triangle}(R)$ the family of BE-limits f of functions in $M_P(R)$ with compact supports, that is, f=C-lim f_n and $\lim_n E_R(f-f_n)=0$ on R, where $\{f_n\}$ is a sequence of uniformly bounded functions in $M_P(R)$ with compact supports, and C-lim stands for uniform convergence in compact sets. The M_P -compactification R^*_{MP} is called Royden's P-compactification. Royden's P-harmonic boundary is the subset

$$\triangle_{MP} = \{x \in R^*_{MP} | f(x) = 0 \text{ for all } f \in M_{P\triangle}(R)\}.$$

A point s_P in R^*_{MP} is called a P-singular point if every function $f \in M_P(R)$ vanishes at s_P . It exists if and only if $\int_R P dv = \infty$ (cf. [6]). Since $M_P(R)$ separates the points in R^*_{MP} , it is unique. Clearly $s_P \in \Delta_{MP}$.

The P-singular point s_P will play an important role in our study.

By way of preparation we first observe:

PROPOSITION. The following relations are valid:

- (i) $M_P(R) \subset N_P(R)$,
- (ii) $M_{P\triangle}(R) = M_P(R) \cap N_{P\triangle}(R)$.

PROOF. Let $\{\Omega\}$ be a regular exhaustion of R, and $f \in M_p(R)$. Since the sequence $\{h_f^{P,\Omega}\}$ converges to h_f^P in the BE-topology, we have $f \in N_p(R)$. For every $f \in M_p(R)$,

 $h_f^P(x) = \int_{\Delta MP} f(t)K(x,t)d\mu(t)$

with K(x,t) the P-harmonic kernel, and μ the P-harmonic measure with center at a fixed point (cf. [5]). Thus $f \in M_P(R) \cap N_{P\triangle}(R)$ if and only if $f \equiv 0$ on Δ_{MP} , and therefore if and only if $f \in M_{P\triangle}(R)$.

4. By the above proposition, every $f \in M_P(R)$ can be continuously extended to R^*_{NP} . Thus R^*_{NP} can be divided into equivalence classes of points by the following equivalence relation: $x \sim y$ if f(x) = f(y) for all $f \in M_P(R)$. The quotient space R^*_{NP}/\sim with the quotient topology is homeomorphic to Royden's P-compactification (cf. [3], [9]). In view of the natural projection ρ of R^*_{NP} onto the quotient space R^*_{NP}/\sim ,

we have:

There exists a continuous mapping ρ of R^*_{NP} onto R^*_{MP} such that ρ is the identity mapping on R and $f(x)=f(\rho(x))$ for all $x\in R^*_{NP}$ and all $f\in M_P(R)$.

We shall refer to the inverse image of a point $x \in \mathbb{R}^*_{MP}$ as the fiber of x.

5. Since \triangle_{NP} and \triangle_{MP} are closely related to the structure of PB and PBE respectively, the nature of the mapping ρ on \triangle_{NP} is important. Since the P-singular point s_P does not affect the dimension of the vector space PBE, it is natural to ask whether or not the set $\rho^{-1}(s_P)$ belongs to \triangle_{NP} .

THEOREM 1. The fiber of the P-singular point s_P is a subset of Wiener's P-harmonic boundary \triangle_{NP} if and only if the base manifold R is P-hyperbolic.

PROOF. Since the P-parabolicity of R implies $\Delta_{NP} = \phi$, the necessity is trivial. To prove the sufficiency, we assume to the contrary that $\rho^{-1}(s_P) \not\subset \Delta_{NP}$, that is, $s_P \not\in \rho(\Delta_{NP})$. Since Δ_{NP} is compact and nonempty, so is $\rho(\Delta_{NP})$. One can find an $f \in M_P(R)$ with $f \mid \rho(\Delta_{NP}) = 1$. By the orthogonal decomposition $M_P(R) = PBE$ $(R) \oplus M_{P\Delta}(R)$, the PBE-projection h_f^P of f has value 1 on $\rho(\Delta_{NP})$. Since $f(\rho(x)) = f(x)$ for all $x \in R^*_{NP}$ and all $f \in M_P(R)$, $h_f^P \mid \Delta_{NP} = 1$. In view of the maximum principle for PB-functions on Δ_{NP} , we see that h_f^P is the P-elliptic measure e_P of R.

Thus $E_R(e_P) < \infty$ and

$$\int_{R} P(e_{p})^{2} dv = \int_{R} Pe_{p} \lim_{\Omega \to R} h_{1}^{P,\Omega} dv < \infty.$$

By the monotone convergence theorem,

$$\lim_{\Omega \to R} \int_{R} P e_{p} h_{1}^{P,\Omega} dv < \infty.$$

Choose a regular subregion Ω_0 such that

$$\int_{R} Pe_{P}h_{1}^{P,\Omega_{0}}dv < \infty.$$

Since Pe_P is nonnegative and $h_1^{P,\Omega_0}=1$ on $R-\Omega_0$,

$$\int_{R-\Omega_{\rm o}} Pe_{P} dv < \infty.$$

By the continuity of Pe_{P} , $\int_{\Omega_{0}} Pe_{P} dv < \infty$, and therefore

$$\int_R Pe_p \ dv \ < \infty.$$

By repeating the same argument we obtain

$$\int_{R} P \ dv < \infty$$
.

This implies that the P-singular point s_P does not exist, a contradiction.

6. Theorem 1 has the following consequences.

THEOREM 2. On a P-hyperbolic manifold R, the following relations are equivalent:

(i)
$$D_R(e_P) + \int_R P(e_P)^2 dv < \infty$$
,

(ii)
$$\int_{\mathbb{R}} P(e_P)^2 dv < \infty$$
,

(iii)
$$\int_R P dv < \infty$$
.

PROOF. (i)⇒(ii) is trivial and (ii)⇒(iii) follows from the proof of Theorem 1. For (iii) \(\Rightarrow\)(i) we refer to [8].

COROLLARY. If $\int_R P(e_p)^2 dv < \infty$, then $D_R(e_p) < \infty$.

THEOREM 3. On a P-hyperbolic Riemannian manifold R, $\rho(\triangle_{NP}) = \triangle_{MP}$

PROOF. Since $M_{P,\Lambda}(R) \subset N_{P,\Lambda}(R)$, we have $\rho(\Delta_{NP}) \subset \Delta_{MP}$ by the definitions of P-harmonic boundaries and the mapping ρ . It remains to show that $\Delta_{MP} - \rho(\Delta_{NP})$ $=\phi$. Suppose $\triangle_{MP}-\rho(\triangle_{NP})\neq\phi$. Since $s_P\in\rho(\triangle_{NP})$ by Theorem 1, one can find a point $x \in \Delta_{MP} - \rho(\Delta_{NP})$ and a function $f \in M_P(R)$ such that $0 \le f \le 1$, f(x) = 1, and $f\equiv 0$ on $\rho(\Delta_{NP})$ (cf. [4]). Thus the PBE-projection u of f coincides with f on Δ_{MP} . Since u(x)=f(x)=1, u>0 on R. On the other hand $u(\triangle_{NP})=u(\rho(\triangle_{NP}))=0$, and therefore $u\equiv 0$ on R, a contradiction.

Note that the P-singular point s_P does not exist if $\int_R P dv < \infty$.

COROLLARY 1. If $\int_{\mathbb{R}} P dv < \infty$, then $\rho(\Delta_{NP}) = \Delta_{MP}$.

COROLLARY 2. If $R \notin \mathcal{O}_{PB}$ and $\int_R P dv = \infty$, then the dimension of the vector space PBE(R) is strictly less than the dimension of PB(R).

PROOF. If $R \notin \mathcal{O}_{PB}$ and $\int_{\mathbb{R}} P dv = \infty$, then $e_p \in PB(R)$ and $e_p \notin PBE(R)$.

COROLLARY 3. If $R \notin \mathcal{O}_{PB}$, then $R \in \mathcal{O}_{PBE}$ if and only if $\triangle_{MP} = \{s_P\}$.

COROLLARY 4. A manifold $R \in \mathcal{O}_{PBE} - \mathcal{O}_{PB}$ if and only if $\triangle_{MP} = \rho(\triangle_{NP}) = \{s_P\}$.

University of California, Los Angeles

REFERENCES

- [1] C. CONSTANTINESCU-A. CORNEA, Ideale Ränder Riemannscher Flüchen, Springer, 1963, 244 pp.
- [2] ____, Compactification of harmonic spaces, Nagoya Math. J. 25 (1965), 57 pp.
- [3] Y. K. KWON-L. SARIO, The P-singular point of the P-compactification for ∆u=Pu, Bull. Amer. Math. Soc. (1971), 128-133.
- [4] Y.K. KWON-L. SARIO-J. SCHIFF, Bounded energy-finite solutions of $\Delta u = Pu$ on α Riemannian manifold, Nagoya Math. J. 42 (1971), 95-108.

- [5] ____, The P-harmonic boundary and evergy-finite solutions of ∆u=Pu, Nagoya Math.
 J. 42 (1971), 31-41.
- [6] M. NAKAI-L. SARIO, A new operator for elliptic equations, and the P-compactification for $\triangle u = Pu$, Math. Ann. 189(1970), 242-256.
- [7] M. OZAWA, Classification of Riemann surfaces, Kôdai Math. Sem. Rep. 4 (1952), 63-76.
- [8] H.L. ROYDEN, The equation ∆u=Pu, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A.I. 271 (1959), 27 pp.
- [9] L. SARIO-M. NAKAI, Classification theory of Riemann surfaces, Springer, 1970, 446 pp.
 [10] H. TANAKA, On Wiener compactification of a Riemann surface associated with the

equation $\triangle u = Pu$, Proc. Japan Acad. 45 (1969), 675-679.