HAUSDORFF METRIC ON THE FAMILY OF WEAKLY COMPACT SETS IN A BANACH SPACE

By Tae-Geun Cho

In this note we prove that the family of non empty weakly compact convex subsets of a weakly complete Banach space is a complete metric space if the Hausdorff metric is given. It is also shown that the collection of strictly convex and smooth convex bodies form a dense subset of the metric space.

1. Hausdorff metric.

Let X be a weakly complete Banach space and let \mathcal{K} be the collection of non empty weakly compact convex subsets of X. For $A, B \in \mathcal{K}$, define

$$d(A, B) = \inf \{r: A \subset V_r(B) \text{ and } B \subset V_r(A)\}$$

where

$$V_r(A) = \{x \in X : \inf \{ ||x-a|| : a \in A \} \le r \}.$$

Since every weakly compact convex subset of a Banach space is bounded and closed in norm [1, Theorem V.6.1 and Theorem V.3.13] clearly the real valued function $d: \mathcal{K} \times \mathcal{K} \to \mathcal{R}$ is a metric on \mathcal{K} (also see [2, p. 131]).

LEMMA 1. If $\{A_n\}$ is a Cauchy sequence in the metric space (\mathcal{K}, d) , then the union $\bigcup_{n=1}^{\infty} A_n$ is weakly sequentially compact.

PROOF. Suppose that $\{a_n\}$ is a sequence in $\bigcup_{n=1}^{\infty} A_n$. If $\{a_n\}$ is a subset of finitely many A_n is, then clearly $\{a_n\}$ has a subsequence which converges weakly to an element of A_n for some n [1, Theorem V.6.1]. Suppose that no finite union of $\{A_n\}$ contains the sequence $\{a_n\}$. Without loss of generality we may assume that $a_n \in A_n - \bigcup_{j < n} A_j$. Given $\varepsilon > 0$, choose N such that $d(A_i, A_j) < \frac{\varepsilon}{5}$ if $i, j \ge N$.

For each $j \ge N$ there is a $b_j \in A_N$ such that $||a_j - b_j|| < \frac{\varepsilon}{4}$ by the definition of the metric d. Since A_n is weakly compact the sequence $\{b_j\}$ has a weakly convergent subsequence, say $\{b_j'\} \rightarrow b \in A_N$ weakly. Let $\{a_j'\}$ be a subsequence of $\{a_n\}$ corresponding to $\{b_j'\}$. Choose $N_1 \ge N$ for all $f \in X^*$ such that $|f(b_j') - f(b)| < \frac{\varepsilon}{4}$ whenever $j > N_1$. If $m, n > N_1$, then for the functional f

Partially supported by National Science Foundation SD Grant GU 3171 and SUNY Faculty Research Fellowship

$$|f(a_{m'}) - f(a_{n'})| \le |f(a_{m'}) - f(b_{m'})| + |f(b_{m'}) - f(b)| + |f(b) - f(b_{n'})| + |f(b_{n'}) - f(a_{n'})| < \varepsilon.$$

Therefore $\{a_i'\}$ is a weak Cauchy sequence and it converges.

LEMMA 2. If $\{D_n\}$ is a Cauchy sequence in \mathcal{K} with $D_n \supset D_{n+1}$ then $D = \bigcap_{n=1}^{\infty} D_n$ is a member of \mathcal{K} and $\lim_{n \to \infty} D_n = D$.

PROOF. Clearly $D\neq \phi$ (finite intersection property) and closed, hence it is weakly compact. Suppose that $\lim_{n\to\infty} D_n\neq D$, then there is an $\varepsilon>0$ and a subsequence $\{D_n'\}$ of $\{D_n\}$ such that

$$d(D_n', D) = \inf \{r: D_n' \subset V_r(D)\} \ge \varepsilon.$$

Choose a number N such that

$$d(D_N, D) \ge \varepsilon$$
 and $d(D_i, D_j) < \frac{\varepsilon}{2}$, $i, j \ge N$.

From $d(D_N, D) \ge \varepsilon$, we may choose $x_N \in D_N$ such that

$$\inf \{||x_N - x|| : x \in D\} \ge \frac{2}{3} \varepsilon.$$

Since $\{D_n\}$ is decreasing and $d(D_N, D_{N+j}) < \frac{\varepsilon}{2}$, all j, there is a sequence $\{x_j\}$ such that $x_j \in D_{N+j}$ and $\|x_N - x_j\| < \frac{\varepsilon}{2}$. Let x_0 be a weak limit point of a subsequence of $\{x_j\}$ then $x_0 \in D_N$ and $\|x_N - x_0\| \le \frac{\varepsilon}{2}$ (This follows from the fact that $\{x_j\}$ is a sequence of weakly compact convex set $\{x: x \in D_N, \|x - x_N\| \le \frac{\varepsilon}{2}\}$), therefore $x_0 \notin D$. Now we will show that $x_0 \in D$ and yield a contradiction. Since the sequence $\{x_j, x_{j+1}, x_{j+2}, \dots\}$ is a subset of D_{N+j} for each $j=1, 2, 3, \dots$, $x_0 \in D_{N+j}$ by the weak compactness and $x_0 \in \bigcap_{j=1}^{\infty} D_{N+j} = \bigcap_{n=1}^{\infty} D_n = D$.

THEOREM 1. If X is a weakly complete Banach space, then the family \mathcal{K} of all non empty weakly compact convex subsets of X is a complete metric space in the Hausdorff metric.

PROOF. Suppose that $\{A_n\}$ is a Cauchy sequence in $\mathscr K$ and let $D_n = \overline{\operatorname{co}} \left(\bigcup_{i=n}^{\infty} A_i \right)$ where $\overline{\operatorname{co}}(S)$ denotes the closed convex hull of a set S. Since the closed convex hull of a weakly compact set is weakly compact [1, Theorem V.6.4] and a convex set in a Banach space is weakly closed if and only if it is closed in norm topology [1, Theorem V.3.13], $D_n = \overline{\operatorname{co}} \left(\bigcup_{i=n}^{\infty} A_i \right)$ is weakly compact by Lemma 1. We claim that $\{D_n\}$ is a decreasing Cauchy sequence and by Lemma 2 $\lim_{n\to\infty} D_n = D$.

Indeed, given $\varepsilon > 0$ let N be a number with $d(A_i, A_j) < \frac{\varepsilon}{3}, i, j \ge N$. Suppose that $k \ge N$ and $x \in \mathbb{C} \cup \bigcup_{i=k}^{\infty} A_i$, then $x = \sum_{j=1}^{N(k)} t_j x_j$ where $x_j \in \bigcup_{i=k}^{\infty} A_i$, $\sum t_j = 1$, $0 < t_j < 1$. Let $a_j \in A_k$ and $||a_j - x_j|| < \frac{\varepsilon}{3}$. Since $\sum_{j=1}^{N(k)} t_j a_j \in A_k$ and $||x - \sum_j t_j a_j|| < \frac{\varepsilon}{3}$, $D_k \subset V_{\frac{\varepsilon}{3}}$ (A_k) and $d(D_k, A_k) \le \frac{\varepsilon}{3}$. If $i, j \ge N$,

$$d(D_i, D_j) \leq d(D_i, A_i) + d(A_i, A_j) + d(A_i, D_j) < \varepsilon$$

In the above proof we have shown that given $\varepsilon > 0$, there is a number N such that $d(A_k, D_k) < \varepsilon$ whenever $k \ge N$. Hence $\lim_{n \to \infty} A_n = \lim_{n \to \infty} D_n = \bigcap_{n=1}^{\infty} D_n$.

2. An approximation theorem.

Approximation of convex sets of separable Banach spaces was studied in Klee [3]. Here we prove that a convex body in a reflexive space can be approximated by a strictly convex and smooth one. Let C be a convex body (a bounded closed convex subset with non empty interior) of a Banach space. A functional $f_0 \in X^*$ is called a supporting functional of C at a point $x_0 \in C$ if $f_0(x_0) = r = \sup\{Re f_0(x): x \in C\}$ and the hyperplane $\{x: x \in X \text{ and } f_0(x) = r\}$ is said to be supporting C at x_0 . If every boundary point x_0 of a convex body C satisfies the property that each supporting hyperplane of C at x_0 intersects C at exactly one point x_0 , then C is said to be strictly convex. A convex body C is called smooth if there is a unique hyperplane supporting C at each boundary point of C. The norm of a Banach space is called strictly convex (smooth, respectively) if every boundary point of the unit ball of the space is strictly convex (smooth, respectively) [3], [4].

THEOREM 2. Let C be a convex body of a (non separable) reflexive Banach space X and let p be an interior point of C. Given $0 < \varepsilon < 1$ there is a strictly convex and smooth convex body D such that $p+\varepsilon(C-p) \subset D \subset C$ where $c+p = \{c+p: c \in C\}$.

PROOF. We may assume that p=0. Since X is reflexive there is an equivalent strictly convex and smooth norm $\|\cdot\|$ on X [4, Theorem 5.2] and let U be the closed unit ball of X under the norm $\|\cdot\|$. Hence U is a strictly convex and smooth convex body of X. Let r>0 such that $rU=\{rx\colon x\in U\}\subset \frac{1-\varepsilon}{2}$ C and let $D_0=rU+\frac{1+\varepsilon}{2}$ C. Clearly D_0 is a convex set with non-empty interior. Hence,

to see the set D_0 is closed it is enough to show that it is weakly closed. Suppose that $\{d_n\}$ is a sequence in D_0 with $d_n = u_n + c_n$ where $u_n \in rU$, $c_n \in \frac{1+\varepsilon}{2}$ C. Since both U and C are weakly compact, there are subsequences $\{u_n'\}$ and $\{c_n'\}$ of $\{u_n\}$ and $\{c_n\}$, respectively, and $u_n' \to u \in rU$ and $c_n' \to c \in \frac{1+\varepsilon}{2}$ C weakly, respectively. Hence, the corresponding subsequence $d_n' \to u + c$ weakly and $u + c \in D_0$, so D_0 is weakly compact. Smoothness of D_0 follows immediately from the smoothness of rU. Now by the proof of Theorem 1.5 and Lemma 1.4 of Klee [3] there is a homeomorphism T on X such that $D = TD_0$ is strictly convex, smooth and $\varepsilon C \subset D \subset C$.

COROLLARY. Let \mathcal{X} be the family of non empty weakly compact convex subsets of a reflexive Banach space X with the Hausdorff metric. Then the collection of strictly convex and smooth convex bodies of X is dense in \mathcal{X} .

PROOF. Given $\varepsilon > 0$ and $K \in \mathscr{K}$ it is clear that $V_{\varepsilon}(K)$ is a convex body. Let $p \in K$. Then there exists a strictly convex and smooth convex body D such that $p + \varepsilon (V_{\varepsilon}(K) - p) \subset D \subset V_{\varepsilon}(K)$. Now clearly $d(K, D) < \varepsilon$.

State University of New York at Albany -1971-Mathematics Research Paper No. 218.

REFERENCES

- [1] Dunford, N. and Schwartz, J. Linear operators, Part I. Interscience Publishers, Inc. (1966).
- [2] Kelley, J. General Topology. Van Nostrand (1955).
- [3] Klee, V. Some new results on smoothness and rotundity in normed linear spaces. Math. Ann. 139 51-63, (1959).
- [4] Lindenstrauss, J. Weakly compact sets -- Their topological properties and the Banach spaces they generate. to appear.