AN CERTAIN HYPERSURFACES WITH AN (f, g, u, v, λ) -STRUCTURE IN A SASAKIAN MANIFOLD

By Un Kyu Kim

§ 0. Introduction

The (f, g, u, v, λ) -structures have been studied by many authors [2,5,6]. It is well known that the hypersurface of an almost contact manifold admits an (f, g, u, v, λ) -structure [2,6]. D.E. Blair, G.D. Ludden and K. Yano have studied the hypersurface of an odd-dimensional sphere in the case of $f \circ h = h \circ f$ and $f \circ h = -h \circ f$, where h is the second fundamental tensor of the hypersurface [1].

On the other hand, S. Yamaguchi [4] have studied the hypersurface of a Sasakian manifold and obtained a result in the case of $f \circ h = h \circ f$

In this present paper, we investigate the hypersurfaces of certain Sasakian manifold in the case of $f \circ h = -h \circ f$.

§ 1. Hypersurfaces in a Sasakian manifold

Let \tilde{M} be (2n+1)-dimensional almost contact metric manifold covered by a system of coordinate neighborhoods $\{\tilde{U}, X^{\kappa}\}$, where here and in the sequel indices κ , μ , ν , λ ... run over the range $\{1, 2, \dots, 2n+1\}$ and let $(F_{\kappa}^{\lambda}, G_{\mu\lambda}, V_{\lambda})$ be the almost metric structure, that is,

$$(1.1) \quad F_{\kappa}^{\mu} F_{\mu}^{\lambda} = -\delta_{\kappa}^{\lambda} + V_{\kappa} V^{\lambda},$$

$$(1.2) \quad V_{\kappa} F_{\lambda}^{\kappa} = 0, \quad F_{\lambda}^{\kappa} V^{\lambda} = 0,$$

(1.3)
$$V^{\lambda}V_{\lambda}=1$$
 and

$$(1.4) \quad G_{\gamma\beta}F_{\lambda}^{\ \kappa}F_{\mu}^{\ \beta} = G_{\lambda\mu} - V_{\lambda}V_{\mu}$$

If \tilde{M} is a Sasakian manifold, then

$$(1.5) \quad \nabla_{\mu} V^{\kappa} = F_{\mu}^{\kappa}, \quad \nabla_{\mu} F_{\lambda}^{\kappa} = -G_{\mu\lambda} V^{\kappa} + \delta_{\mu}^{\kappa} V_{\lambda}$$

and for the curvature tensor $\tilde{R}_{\nu\mu\lambda\kappa}$ of \tilde{M} we have

$$(1.6) V^{\kappa} \tilde{R}_{\nu\mu\lambda\kappa} = V_{\nu} G_{\mu\lambda} - V_{\mu} G_{\nu\lambda}$$

, where we denote by $\begin{Bmatrix} \kappa \\ \mu \lambda \end{Bmatrix}$ and ∇_{μ} the christoffel symbols formed with the Riemannian metric of $G_{\mu\lambda}$ of \tilde{M} and the operator of covariant differentiation with

respect to $\begin{Bmatrix} \kappa \\ \mu \lambda \end{Bmatrix}$ respectively.

Let M be a 2n-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods $\{U, x^h\}$, where here and in the sequel the indicies h, i, j, k, ..., run over the range $\{1, 2, ..., 2n\}$ and differentiably imbedded in \tilde{M} as a hypersurface by the equations $X^{\kappa} = X^{\kappa}(X^h)$

We put

$$B_i^{\kappa} = \partial_i X^{\kappa}, \quad \partial_i = \frac{\partial}{\partial x^i}$$

and choose a unit C^{κ} of \tilde{M} normal to M in such a way that 2n+1 vectors B_i^{κ} and C^{κ} give the positive orientation of \tilde{M} as the following

$$(1.7) F_{\lambda}^{\kappa} B_i^{\lambda} = f_i^{h} B_h^{\kappa} + u_i C^{\kappa},$$

$$(1.8) \quad F_{\lambda}^{\kappa} C^{\lambda} = -u^{i} B_{i}^{\kappa}$$

$$(1.9) \quad V^{\kappa} = B_i^{\kappa} v^i + \lambda C^{\kappa}$$

where f_i^h is a tensor field of type (1,1), u_i and v_i are 1-forms of M, λ is a function on M and $u^i = u_j g^{ji}$, $v_i = v_j g^{ji}$ for the induced Riemannian metric g_{ji} on M from that of \tilde{M} .

Then the hypersurface M admits an (f, g, u, v, λ) -structure [6], that is,

$$f_{i}^{j}f_{j}^{h} = -\delta_{i}^{h} + u_{i}u^{h} + v_{i}v^{h}$$

$$f_{i}^{h}u^{i} = -\lambda v^{h}, \quad f_{i}^{h}v^{i} = \lambda u^{h},$$

$$f_{h}^{i}u_{i} = \lambda v_{h}, \quad f_{h}^{i}v_{i} = -\lambda u_{h}$$

$$u^{i}u_{i} = 1 - \lambda^{2}, \quad v^{i}v_{i} = 1 - \lambda^{2}$$

$$u^{i}v_{i} = 0, \quad v^{i}u_{i} = 0$$

$$g_{ii}f_{h}^{i}f_{j}^{j} = g_{h} - u_{h}u_{j} - v_{h}v_{j}$$

We denote by $\binom{h}{ij}$ and ∇_i the christoffel symbols formed with g_{ji} and the operator of covariant differentiation withrespect to $\binom{h}{ji}$ respectively. Then the equations of Gauss and those of Weingarten are

(1.11) $\nabla_j B_i^{\kappa} = h_{ji} C^{\kappa}$ and $\nabla_j C^{\kappa} = -h_j^{i} B_i^{\kappa}$ respectively, where h_{ji} is the second fundamental tensor and $h_i^{i} = h_{ji} g^{li}$

We have from (1.5) and $(1.7)\sim(1.11)$ the following

(1.12)
$$\nabla_j f_i^h = -h_{ji} u^h + h_j^h u_i - g_{ji} v^h + \delta_j^h v_i$$

$$(1.13) \quad \nabla_j u_i = -h_{jl} f_i^l - \lambda g_{ji},$$

$$(1.14) \quad \nabla_j v^h = f_j^h + \lambda h_j^h,$$

$$(1.15) \quad \nabla_j \lambda = u_j - h_{ji} v^i.$$

Now we assume that the hypersurface M of the Sasakian manifold \tilde{M} satisfies $f_i^h h_h^j = -h_i^h f_h^j$ and $\lambda(1-\lambda^2)$ is almost everywhere non-zero.

The condition $f_i^h h_h^j = -h_i^h f_h^j$ is equivalent to

$$(1.16) \quad f_j^{\ k} h_{ki} = f_i^{\ k} h_{kj}.$$

If we transvect (1.16) with $v^i u^j$, then we have

$$(1.17) \quad h_{ij}u^{i}u^{j} = -h_{ij}v^{i}v^{j}.$$

Transvecting (1.16) with f_k^j and taking account of (1.10), we have

$$(u^k u^l + v^k v^l)h_{li} = (u_i u^l + v_i v^l)h_l^k$$

from which

$$(1 - \lambda^{2})h_{ij}u^{j} = h_{lj}u^{l}u^{j}u_{i} + h_{lj}u^{l}v^{j}v_{i},$$

$$(1 - \lambda^{2})h_{ij}v^{j} = h_{lj}u^{l}v^{j}u_{i} + h_{lj}v^{l}v^{j}v_{i}.$$

From (1.17) these equations can be written as

(1.18)
$$h_{ij}u^{j} = \beta u_{i} - \alpha v_{i},$$
$$h_{ij}v^{j} = \beta u_{i} - \alpha v_{i},$$

where α and β are defined by

$$h_{ji}u^{j}u^{i} = \alpha(1-\lambda^{2}),$$

$$h_{ji}u^{j}v^{i} = \beta(1-\lambda^{2}).$$

Moreover, from (1.16) we can easily show that $h_i^i=0$, that is, the hypersurface M is minimal.

Differentiating the second equation of (1.18) covariantly along M, we obtain

$$(1.19) \ (\nabla_k h_{ij}) \ v^j + h_{ij} [f_k^{\ j} + \lambda h_j^{\ k}] = (\nabla_k \beta) u_i + \beta (-h_k^{\ l} f_{li} - \lambda g_{ki}) - (\nabla_k \alpha) v_i - \alpha (f_{ki} + \lambda h_{ki}).$$

On the other hand, operating ∇_k to (1.15) and taking account of (1.13) and (1.14), we have

$$(1.20) \quad \nabla_k \nabla_j \lambda = -\lambda g_{kj} - f_j^l h_{lk} - (f_k^h + \lambda h_k^h) h_{hj} - v^h \nabla_k h_{jk}.$$

If we subtract (1.20) from the equation obtained by interchanging the indicies k and i in (1.19), we obtain

$$(1.22)) \quad (\nabla_k \beta) u_i - (\nabla_i \beta) u_k - [(\nabla_k \alpha) v_i - (\nabla_i \alpha) v_k] - 2\alpha f_{ki} = 0,$$

because of (1.21) and (1.16).

Transvecting (1.22) with u^i and making use of (1.10) we get

$$(1.23) \quad \nabla_k \beta = \frac{1}{1 - \lambda^2} \{ u^i (\nabla_i \beta) u_k + (2\lambda \alpha - u^i \nabla_i \alpha) v_k \}.$$

Substituting (1.23) into(1.22), we find

$$(1.24) \quad \frac{1}{1-\lambda^2} \{2\lambda\alpha v_k u_i - 2\lambda\alpha v_i u_k - (\nabla_j \alpha) u^j u_i v_k + u^j (\nabla_j \alpha) v_i u_k \} \\ -\{(\nabla_k \alpha) v_i - (\nabla_i \alpha) v_k \} - 2\alpha f_{ki} = 0$$

If we transvect (1.24) with v^i we have

$$(1.25) \quad \nabla_k \alpha = \frac{1}{1 - \lambda^2} \{ u^j (\nabla_j \alpha) u_k + v^j (\nabla_j \alpha) v_k \}.$$

Substituting (1.25) into (1.24), we obtain

$$\begin{split} &\frac{1}{1-\lambda^2}\{2\lambda\alpha v_k u_i - 2\lambda\alpha v_i u_k - (\nabla_j\alpha)u^j v_i u_k + (\nabla_j\alpha)u^j v_i u_k\}\\ &-\frac{1}{1-\lambda^2}\Big[\{(\nabla_j\alpha)u^j u_k + (\nabla_j\alpha)v^j v_k\}v_i - \{(\nabla_j\alpha)u^j u_i + (\nabla_j\alpha)v^j v_i\}v_k\Big] - 2\lambda f_{ki} = 0, \end{split}$$

 $1-\lambda^2 \left[(\sqrt{y} + \sqrt{y} + \sqrt{y}$

 $(1.26) \quad \lambda \alpha(v_h u_i - v_i u_h) = \alpha(1 - \lambda^2) f_{hi}.$

Transvecting (1.26) with f^{ij} and using (1.10), we find

$$\alpha(1-\lambda^2)\left[-\delta_k^j + u_k u^j + v_k v^j\right] = -\lambda^2 \alpha \left[v_k v^j + u_k u^j\right],$$

from which, we have $\alpha=0$ if n>1. Thus, the equations of (1.18) can be written as

(1.27)
$$h_{ij}u^{j} = \beta v_{i},$$

$$h_{ij}v^{j} = \beta u_{i}.$$

§ 2. Certain hypersurface of a Sasakian manifold

In this section we assume that the tangent space of the hypersurface M is invariant under the curvature transformation of a Sasakian manifold \tilde{M} . The equation of Codazzi are $\nabla_k h_{ii} - \nabla_i h_{ki} = 0$.

Gauss equation is given by

(2.1)
$$\tilde{R}_{\nu\mu\lambda\kappa}^{} B_{\nu}^{\kappa} B_{j}^{\mu} B_{i}^{\lambda} B_{k}^{\kappa} = R_{kjih} - (h_{kh}h_{ji} - h_{jk}h_{ki}).$$

Transvecting (2.1) with v^{j} , we have

$$\begin{split} &\widetilde{R}_{\nu\mu\lambda\kappa} \ B_{k}^{\ \nu} B_{j}^{\ \mu} B_{i}^{\ \lambda} B_{k}^{\ \kappa} v^{j} = \widetilde{R}_{\nu\mu\lambda\kappa} \ B_{k}^{\ \kappa} (V^{\mu} - \lambda \ C^{\mu}) \ B_{i}^{\ \lambda} B_{k}^{\ \kappa} \\ &= \widetilde{R}_{\nu\mu\lambda\kappa} \ V^{\mu} B_{k}^{\ \nu} B_{i}^{\ \lambda} B_{k}^{\ \kappa} = (V_{\lambda} G_{\kappa\nu} - V_{\kappa} G_{\lambda\nu}) B_{k}^{\ \nu} B_{i}^{\ \lambda} B_{k}^{\ \kappa} \\ &= v_{i} g_{kh} - v_{k} g_{ki} = R_{kiih} \ v^{j} - \beta (h_{kh} u_{i} - h_{ki} u_{h}) \end{split}$$

because of (1.6), (1.9) and $\tilde{R}_{\nu\mu\lambda\kappa}B_{k}^{\nu}B_{j}^{\mu}B_{i}^{\lambda}C^{\kappa}=0$,

Thus, we find

(2.2)
$$R_{kiih} v' = v_i g_{kh} - v_h g_{ki} + \beta (h_{kh} u_i - h_{ki} u_h)$$
.

Differentiating the first equation of (1.27) covariantly, we find

$$(2.3) \quad (\nabla_k h_{ij}) u^j + h_{ij} (\nabla_k u^j) = (\nabla_k \beta) v_i + \beta (f_{ki} + \lambda h_{ki}).$$

If we subtract (2.3) from the equation obtained by interchanging the indices k and i in (2.3), we obtain

$$(2.4) \quad -2f_{kj}h_{il}h^{jl} = (\nabla_k\beta)v_i - (\nabla_i\beta)v_k + 2\beta f_{ki}$$

Transvecting (2.4) with v^i we have

$$\nabla_{k}\beta = \frac{1}{1-\lambda^{2}}\{(2\beta\lambda + 2\beta^{2}\lambda)u_{k} + (\nabla_{i}\beta)v^{i}u_{k}\}, \text{ or }$$

(2.5)
$$\nabla_k \beta = \frac{1}{1-\lambda^2} (2\beta\lambda + 2\beta^2\lambda) u_k$$
 by virtue of (1.23).

Substituting (2.5) into (2.4), we find

$$-f_{k}^{j}h_{il}h_{j}^{l} = \frac{1}{1-\lambda^{2}}\lambda(\beta+\beta^{2})(u_{k}v_{i}-u_{i}v_{k}) + \beta f_{ki^{*}}$$

Transvecting the above equation with f_l^k , we obtain

$$-(-\delta_l^j + u_l u^j + v_l v^j) h_{ih} h_j^h = \frac{1}{1 - \lambda^2} (\beta + \beta^2) \lambda^2 [v_l v_i + u_l u_i] + \beta [-g_{li} + u_l u_i + v_l v_i],$$

from which

(2.6)
$$(1-\lambda^2)(h_l^h h_{ih} + \beta g_{li}) = \beta(\beta+1)(u_j u_i + v_j v_i).$$

We here assume that the sectional curvature $\kappa(x)$ with respect to the section spanned by u^h and v^h is constant at every point x of M. Then the sectional curvature $\kappa(x)$ with respect to the section spanned by u^h and v^h is given by

$$\kappa(x) = \frac{R_{kjih} u^k v^j u^i v^h}{-v_i v^j u_i u^i} = 1 - \beta^2,$$

because of (2.2)

Thus, $\beta=0$ or $\beta=-1$ by virtue of (2.5).

Case 1. $\beta = 0$.

From (2.6) we obtain $h_{ij}=0$. Hence we have

 $\nabla_j \nabla_i \lambda = -\lambda g_{ji}$ from (1.13) and (1.15). By Obata's theorem [3], if M is complete orientable hypersurface in \tilde{M} , then M is isometric with a sphere $S^{2n}(1)$

Care 2. $\beta = -1$.

In this case we have from (2.6)

$$(2.7) \quad h_i^l h_l^j = \delta_i^j$$

 $h_i^i = 0$, (2.7) and $\nabla_k h_{ij} = 0$ show that M^{2n} is a product $N \times N'$ of N and N' both of the same dimension n. Thus, we cover N by a system of coordinate neighborhoods $\{V: y^a\}$ and N' by a system of coordinate neighborhoods $\{W: y^i\}$ and consequently $N \times N'$ by $\{V \times W: y^h\}$. Then the metroc tensor g has components of the form

$$(2.8) \quad \mathbf{g}_{ji} = \begin{pmatrix} \mathbf{g}_{cb}(\mathbf{y}^a) & 0 \\ 0 & \mathbf{g}_{ts}(\mathbf{y}^t) \end{pmatrix}$$

and h_i^h those of the form

$$(2.9) \quad h_j{}^i = \begin{pmatrix} \delta_a{}^b & 0 \\ 0 & -\delta_r{}^s \end{pmatrix}$$

Thus, from (1.16), we see that f_i^h has components of the form

$$(2.10) \quad f_i^h = \begin{pmatrix} 0 & f_a^s \\ f_r^b & 0 \end{pmatrix}$$

Since $\nabla_j \lambda = (1-\beta)u_j = 2u_j$, we have

$$\nabla_{j}\nabla_{i}\lambda = -h_{jk}f_{i}^{k} - 2\lambda g_{ji}.$$

Consequently, we have

$$(2.11) \quad \nabla_c \nabla_b \lambda = -2\lambda g_{cb}$$

and

(2.12)
$$\nabla_t \nabla_s \lambda = -2\lambda g_{ts}$$

because of (2.9) and (2.10).

a, b, c, run over 1, 2,, n

r, s, t, run over n+1, n+2,, 2n

The submanifold N and N' being both complete, the theorem of Obata [3], (2.11) and (2.12) show that N and N' are isometric to $S^n\left(\frac{1}{\sqrt{2}}\right)$. Thus M^{2n} is isometric to $S^n\left(\frac{1}{\sqrt{2}}\right) \times S^n\left(\frac{1}{\sqrt{2}}\right)$. Hence we have the following

THEOREM Let M be a complete orientable hypersurface of a Sasakian manifold \tilde{M} which satisfies $f \circ h = -h \circ f$, $\lambda(1-\lambda^2)$ being almost everywhere non-zero and the tangent space of M being invariant under the curvature transformation of \tilde{M} . If the sectional curvature $\kappa(x)$ with respeat to the section spanned by u^h and v^h is constant at every point x of M, then M is isometric with a sphere $S^{2n}(1)$ or M a product of $S^n\left(\frac{1}{\sqrt{2}}\right)$ and $S^n\left(\frac{1}{\sqrt{2}}\right)$

BIBLIOGRAPHY

- [1] Blair. D.E, G.D. Ludden and K. Yano, Hypersurfaces of odd-dimensional sphere to appear in J. of Diff. Geom.
- [2] Blair. D.E, G.D. Ludden and K.Yano, Induced structures on submanifolds, Ködai Math. Sem. Rep. 22 (1970) 188-198
- [3] Obata, M., Certain conditions for a Riemannian manifold to be isometric with a sphere,
 J. Math Soc Japan 14 (1962) 333-340
- [4] Yamaguchi. S., On hypersurfaces in Sasakian manifolds, Kōdai Math. Sem. Rep. 21 (1969) 64-72
- [5] Yano. K and U-Hang Ki, On quasi-normal (f, g, u, v, λ) structure, to appear in Ködai Math. Sem. Rep.
- [6] Yano. K and M. Okumura, On (f, g, u, v, λ)-Structure. Ködai Math. Sem. Rep. 22 (1970). 401—423
- [7] Yano. K and M. Okumura, On normal (f, g, u, v, λ)-Structures on submaniifolds of codimension 2 in an even dimensional Euclidean space, Kōdai Math. Sem. Rep. 23(1971) 172—197.