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A CHARACTERIZATION OF COMPLEX SPACE FORMS AND ITS
APPLICATION

By Dirk Van Lindt and Leopold Verstraclen

1. Introduction

Let M be a Riemannian manifold with Riemann-Christoffel curvature tensor
f. Then, E.Cartan and J. A. Schouten ohtained the following characterizations
for the spaces of constant sectional curvature and of those which are (locally)
conformal to Euclidean spaces.

THEOREM A [1]. A Riemannian manifold M of dimension>2 is a real space
form if and only if R(X,Y : Z, X)=0 for all orthonormal vectors X, Y and Z
tangent to M at eny of its points.

THEOREM B [8]. A Riemannian manifold M of dimension>3 is conformally
Flat if and only if R(X, Y; Z, U)=0 for all orthonormal vectors X, Y, Z and U
tangent to M at any of its poinis.

Let N be a Kachlerian manifold with Riemann-Christoffel curvature tensor R.
Then K. Yano and S. Sawaki obtained the following complex version of Theo-
rem B which characterizes the spaces N with identically vanishing Bochner

curvature tensor.

THEQREM C [10]. A Kachlerian manifold N of real dimension>6 is Bochner
Flat if and only if R(X,Y; 2, U)=0 for all orthonormal vectors X, Y, Z and U
at any point p of N which span a lotally real subspace of the tangent space
T,N.

In Section 2 we prove the following similar complex version of Theorem A
which characterizes the spaces of constant holomorphic sectional curvature.

THEOREM 1. A Kaehlerian wmanifold N of real dimension>>4 is a complex
space form if and only if R(X,Y;Z, X)=0 for all orthonormal vectors X, ¥
and Z at any point p of N which span a totally veal subspace OF TpN.

The proof is based on the following theorem of B.Y. Chen and K. Ogius.
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THEOREM D [38]. A Kaehlerian manifold of real dimension>4 is a complex
space form if and only if it has constant anti-holomorphic sectional curvature.

A Kachlerian manifold N is said to satisfy the axiom of anti-holomorphic &-
planes if for each x©EN and each anti-holomorphic %-dimensional linear subspace
= of TN there exists a %-dimensional totally geodesic submanifold M of N such
that x&M and T M==. The following is a theorem of K.Nomizu, B.Y. Chen
and K. Ogiue.

THEOREM E (7] 8. A Kaehlerian manifold of dimension 2n satisfies the axiom
of anti-holomorphic k-planes for some k, 2<k<a, if and only if it is a complex
space form.

In Section 3, as an application of Theorem 1, we prove the following result
which may be considered as some improvement of Theorem I.

THEOREM 2. A Kaehlerian manifold N of real dimension 2u>4 is a complex
space form if and only if for every point p in N and cvery m-dimensional anii-
invariant linear subspace T of TpN , 2<<m=<<i1, there exists a lotally real ni-dimen-
sienal submanifold M of N passing through p and having there T as tangent
space such that M has commutative second fundamenial tensors and parallel f-
structure in the normal bundle.

2. Proof of theorem 1

Let N be a Kaehlerian manifold of real dimension 2x>-4, with metric tensor
g, compiex structure J and Riemann-Christoffel curvature tensor R. Let X, Y
and Z be orthonormal vectors which span an anti-invariant (or anti-holerorphic,
or totally real) subspace S of the tangent space T ,N at an arbitrary point p.
This means that the vectors J.X, J¥ and JZ are perpendicular to S.

Then if N is a space of constant holemorphic sectional curvature ¢ it follows
that

[AD) R(X,Y:Z, X)=0,

since actually R is given by
(2 R(A4, B:C, D)-—*‘%{g(z‘ln D)g(B,C)—g(A,Cog(B, D) +g(JA, D)g(JB,C)
-g(JA,C)g(JB, D)+2g(A, JB)g(JC, D)}

for all vectors 4, B, C and D tangent to IV at each of its points.
Conversely we now assume that N satisfies (1) for all vectors X, ¥ and Z of
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the above type. Then also

® R(x, TELs 2L, x)=,

which implies that
(€))] RX,Y:Y, X)=R(X, Z; Z, X).
Let U be any unit tangent vector at p which together with X determines a
totally real plane, that is such that g(X, U)=g(X, JU)=0. We write U as
(3) U=uU,+uU,
whereby U, and U, are unit vectors belonging to the plane ZA JZ and its ortho-
gonal complement in TN, respectively, and compute the sectional curvature for
the plane section X AU making use of (1) and (4):

(6) R(X, U U, X)=R(X, w,U,+u Uy w U +ul, X)
:“31?(;’{. v,;U, X)*uiR(X, 2 U, X)
ZI‘TR(X- Y;Y, X)+u.'jfe(x. Z:Z. X)

=@ +u)R(X, ¥ 1 ¥, X)

=SR(X, Y3 Y, X
This asserts that the sectional curvatures of NV at p are equal for all totally real
plane sections containing the vector X. Let ¥ be any other unit tangent wvector
of ¥ at p. Since #>>2 we can always find a unit vector W in TPN which is
orthogonal to both X and ¥ and such that both planes XAW and VAW are
anti-invariant. Then from (6) we have

) RV, W: W, V)=R(X, W; W, X),

and therefore may conclude that all totally real sectional curvatures of N at p
are equal. By Theorem D this proves Theorem 1.

3. Proof of Theorem 2

Since the totally geodesic submanifolds A in the axiom of anti-holomorphic
planes stated in Section 1 are automatically totally real submanifolds of ths
complex space form N [4] and since every totally geodesic totally real submani-
fold of a Kaehlerian manifold has commutative second fundamental tensors and
parallel f-structure in the normal bundle [6], by Theorem E we need only to
prove that the property

“For every point p in a Kaehlerian manifold N of dimension 2n>>4 and every
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m-dimensional anti-invariant linear subspace T of TPN for some m, 2<m<mn,
there exists a totally real m-dimensional submanifold M of N with commutative
second fundamental tensors and parallel f-structure in the normal bundle such
that p=M and T M =7

implies that N has constant holemorphic sectional curvature.

To do so we first recall some well-known facts about m-dimensional totally
real submanifolds 37 of a 2nd-dimensional Kaehlerian manifold N. The Kaehlerian
metric, the corresponding Levi-Civita connection, the complex structure and the
Riemann-Christoffel curvature tensor of N will be denoted by g, V,J and R.
The induced Riemannian metric on M, the associated connection and curvature
tensor will be denoted by g,V and ®. Because M is totally real the complex
structure J maps every tangent vector of M into one which is normal to M
in N, and so necessary m<n. The second fundamental form ¢ of ¥ in N is
defined by

®) o(X, V)=V, ¥-V,Y
where X and Y are arbitrary vector fields tangent to 3. For a normal vector
field £ on M we write

€)) Vi§=—A: X+Dyf
where —4:X and Dyf are the tangential and the normal component of V,§. AE
is the second fundamental tensor of M with respect to £ and D is the normal
connection of M in N. We have

(10) g(o(X, Y), £)=g(4.X, Y).

The normal curvature tensor will be denoted by RD, that is:

(11) RD(X, Y): [st .Dyl _D[X.Y}'

Then the equations of Gauss, Codazzi and Ricci are given by [2]:

(12) RX,Y:Z W)=R(X,Y:Z W)+gl(X, 2), 6, W))

-g®, 2), (X, W)),
13  REX N =V, )T, 2)-(V'yo)(X, 2),
aH R, Y:& 9=g@® (X, V), 0)-2([4s 4)X, Y),

where X,Y,Z and W are tangent vector fields, £ and ¢ are normal vector

fields, (R(X, Y)Z )J‘ denotes the normal component of R(X, ¥Y)Z and V' is the
connection of van der Waerden-Bortolloti:
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as) V'3, 2)=Dyo¥, 2)-0(Vs¥, 2)~0¥, V42).

A normal section 7 is said to be cylindrical, respectively geodesic, if 0 is an
eigenvalue of Av; with multiplicity =m—1, respectively if A,? vanishes identically.
M is called a totally cylindrical, respectively a fotally geodesic submanifold of N
if there exist 2n—m mutually orthogonal normal sections on 2 which are cylin-
drical, respectively geodesic. M is said to be geodesic with respect to a norinal
subbundle F if every section in & is geodesic. The subbundle .Z° of the normal
bundle T-M which is orthogonal to a normal subbundle & and such that
FOF=TM is called the complementary subbundle of . It is clear that the
complementary subbundle J(TM)® of J(TM) is holomorphic, that is invariant
under J.

Let ¢ be any normal vector field on M in N. Following K. Yano and M.
Kon [9], we put

(16) Jo=Po+fp
where Py and fop are the tangential and normal component of Je. Then P is a
tangent bundle valued 1-form and f is an endomorphism of the normal bundle
such that

an Frf=0.

Therefore if f doesn’t vanish, that is if m<#u, it defines an f-structure in
TM. This structure is said to be parallel if for all tangent vector fields X and
for all normal vector fields £ we have

s DyHES Dy fDyE=0.

The f-structure in the normal bundle of a totally real submanifold M of a
Kachlerian manifold N is parallel if and only if M is geodesic with respect to
the normal subbundle J(TM ) [6] [9].

If for all normal vector fields § and ¢

19 [4s A45]1=0,
then we may choose a field of orthonormal frames E, Ey, =, E, on M consis-
ting of common cigenvectors of the second fundamental tensors As and such that

(20) A;pB;=0.h.E,

where ﬁfj is a Kronecker delta [5]. This means that at most the j-th principal
curvature hj of M with respect to the normal section JE; is non-zero, and thus
that A is cylindrical with respect to the normal directions determined by an

orthonormal frame of the normal subbundle J(TA7).
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Consequently every totally real submanifold M with parallel f-structure in the
normal bundle and commutative second fundamental tensors in a Kaehlerian
manifold N is a totally cylindrical submanifold. )

Now let N be a Kaehlerian manifold satisfying property (*) and let 4, B and
@ be any triple of orthonormal vectors which span an anti-holemorphic subspace
of the tangent space at an arbitrary point p of N. Then by assumption there
exists an m-dimensional totally real submanifold M of N passing through p for
which 4, BET M and QEJ(T,M)" such that for every 7€ J(TM)" we have

2D A,?ZO
and with respect to the frame E,, E,, -+, E, choosen above we have (20).
We'll prove the theorem by showing that

(22 (R(A, BYAY'=0 (mod J(T,M).
Indeed (22) implies in particular that
(23) R(A, B: 4, Q=0

which in view of Theorem 1 is equivalent to N being a complex space form. It
is clear that if

(20 (R(E, EDED™=0 (mod J(TM))
holds for all 7, 7, BE(1, 2, -+, m} then also (22) is true. Of course (24) is evident
when ¢=j. Thus we must prove (24) in the following two cases: ()4, 7 and %
are mutually different; () i=&#j, or which amounts to the same: j=Fk=:.
By (21) for all X, YETM we have [6]

(25 o(X, V)=JA,X.
In case 1 (24) then follows at once from equation (13) of Codazzi and formula
(20). In case T we consider the vector field R(E, Ej)E,- whereby 7£j. From
(20) and (25) we find that

(26) o(E;, EJ.)=O
and
20 (&, E.i)=k=-fE£..

Making use of (26) and (27) the equation of Codazzi yields
(28) (R(E;, EDE)*"=~h,D,, JE(mod J(TM)).

Finally, by (9) and the parallellism of the complex structure J, for any vector
field FEJ(TM)® we have
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(29) gDz, JE, F)=g(Vg JE, F)
=gV E; F)
=g(Jo(E;, ED, F) -

=0,
such that
(30) (RCE;, EPEY =0 (mod J(TID).

This ends the proof of Theorem 2.
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