A NOTE ON SPACES BY EMBEDDINGS IN βX

By Young Soo Jo and Sang Ug Lee

1. Introduction

In [3], Raymond F. Gittings defined the following terminologies; a completely regular space X is P_k -embedded in βX , $G_{\tilde{\sigma}}(K)$ -embedded in βX , strictly P_k -embedded in βX and strongly P_k -embedded in βX by imposing certain conditions on a space X in terms of the way it is embedded in its Stone-Čech compactification βX .

In this paper we define w^kM -spaces as a generalization of $w\Delta$ -spaces and wM-spaces and obtain some characterizations of w^kM -spaces and strictly P_k -embedded spaces in βX . All completely regular spaces are assumed T_1 and the set of positive integers is denoted by N.

2. Preliminaries and definitions

If A is a subset of a space X, the closure A in X is denoted by $\operatorname{Cl}_x A$. If \mathcal{U} is a collection of subsets of a space X and $x \in X$, we define $\operatorname{St}^k(x, \mathcal{U})$ as follows:

$$\operatorname{St}^{1}(x, \mathcal{U}) = \operatorname{St}(x, \mathcal{U}) = \bigcup \{U \in \mathcal{U} : x \in U\},$$

 $\operatorname{St}^{k}(x, \mathcal{U}) = \bigcup \{U \in \mathcal{U} : U \cap \operatorname{St}^{k-1}(x, \mathcal{U}) \neq \emptyset\} \text{ for } k \geq 2.$

If $\mathscr U$ and $\mathscr V$ are covers of a space X, we write $\mathscr U < \mathscr V$ if for every $U \in \mathscr U$ there exists $V \in \mathscr V$ such that $U \subset V$. If $\langle \mathscr U_n \rangle$ is a sequence of covers of X such that $\mathscr U_{n+1} < \mathscr U_n$ for every $n \in \mathbb N$, then the sequence $\langle \mathscr U_n \rangle$ is called a refining sequence.

DEFINITION 2.1 [3]. A completely regular space X is said to be *strictly* P_k -embedded in βX if there exists a refining sequence $\langle \mathcal{B}_n \rangle$ of covers of X by sets open in βX such that

- (a) $\bigcap_{n=1}^{\infty} \operatorname{St}^{k}(x, \mathcal{F}_{n}) \subset X$ for each $x \in X$ and
- (b) for each $x \in X$ and $n \in N$, there exists $n(X) \in N$ such that $\operatorname{Cl}_{\beta x} \operatorname{St}^k(x, \mathcal{B}_{n(x)}) \subset \operatorname{St}^k(x, \mathcal{B}_n)$.

DEFINITION 2.2. A space X is called a w^kM -space if there exists a refining sequence $\langle \mathcal{U}_n \rangle$ of open covers of X such that if $x_n \in \operatorname{St}^k(x, \mathcal{U}_n)$, then the sequence $\langle x_n \rangle$ has a cluster point in X.

In this case, the sequence $\langle \mathcal{U}_n \rangle$ will be called $w^k M$ -sequence. In other paper, w^1 M-space is called $w \Delta$ -space and $w^2 M$ -space is called w M-space.

EXAMPLE 2.3 (A w^2M -space which is not a w^3M -space). Let $R=[0,\omega]$, $S=[0,\Omega]$ and $T=[0,\Omega]$ with the order topology where ω is the first infinite ordinal and Ω is the first uncountable ordinal. If we put $X=R\times S\times T-\{(\omega,\Omega,\Omega)\}$, then the space X is a w^2M -space but it is not a w^3M -space.

3. Main results

The following lemmas will be used throughout the remainder of paper.

LEMMA 3.1[3]. Let $\langle \mathcal{B}_n \rangle$ be a sequence of open collections of subsets of βX . If we put $\mathcal{U}_n = \{B \cap X : B \in \mathcal{B}_n\}$ for each $n \in \mathbb{N}$, then $\operatorname{St}^k(x, \mathcal{U}_n) = \operatorname{St}^k(x, \mathcal{B}_n) \cap X$ for each $k \in \mathbb{N}$.

LEMMA 3.2[3]. Let $\langle \mathcal{U}_n \rangle$ be a sequence of open covers of X. If we put $\mathcal{B}_n = \{B \text{ open in } \beta X : B \cap X \in \mathcal{U}_n\}$ for each $n \in \mathbb{N}$, then $\operatorname{St}^k(x, \mathcal{U}_n) = \operatorname{St}^k(x, \mathcal{B}_n) \cap X$ for each $x \in X$.

LEMMA 3.3[3]. Let $\langle \mathcal{U}_n \rangle$ be a sequence of open covers of X with $\mathcal{U}_{n+1} < \mathcal{U}_n$ for each $n \in \mathbb{N}$. If we put $\mathcal{B}_n = \{B \text{ open in } \beta X : B \cap X \in \mathcal{U}_n\}$, then $\mathcal{B}_{n+1} < \mathcal{B}_n$ for each n.

THEOREM 3.4. A completely regular space X is strictly P_k -embedded in βX for any $k{\in}N$ if and only if there is a sequence $\langle\mathcal{U}_n\rangle$ of open covers of X satisfying:

- (a) $P_x = \bigcap_{n=1}^{\infty} \operatorname{St}^k(x, \mathcal{U}_n)$ is a compact subset of X for each $x \in X$;
- (b) The family $\{\operatorname{St}^k(x,\mathcal{U}_n): n \in \mathbb{N}\}$ is a neighborhood base for the set P_x .

PROOF. Let $\langle \mathscr{B}_n \rangle$ be a refining sequence of covers of X by sets open in βX satisfying (a) and (b) of Definition 2.1. If we put $\mathscr{U}_n = \{B \cap X : B \in \mathscr{B}_n\}$ for each $n \in \mathbb{N}$, then by Lemma 3.1, $P_x = \bigcap_{n=1}^{\infty} \operatorname{St}^k(x, \mathscr{B}_n) = \bigcap_{n=1}^{\infty} \operatorname{Cl}_{\beta x} \operatorname{St}^k(x, \mathscr{B}_n)$ is compact subset of X and the family $\{\operatorname{St}^k(x, \mathscr{U}_n) : n \in \mathbb{N}\}$ is a neighborhood base for the

set P_r .

Conversely, suppose $\langle \mathcal{U}_n \rangle$ is a refining sequence of open covers of X satisfying (a) and (b). If we put $\mathcal{B}_n = \{B \text{ open in } \beta X : B \cap X \in \mathcal{U}_n\}$ for each $n \in N$, then by Lemma 3.3, $\langle \mathcal{B}_n \rangle$ is a refining sequence of covers of X by sets open in βX and by Lemma 3.2, $\operatorname{Cl}_{\beta x} \operatorname{St}^k(x, \mathcal{B}_{n(x)}) \subset \operatorname{St}^k(x, \mathcal{B}_n)$ for some $n(x) \in N$ and hence $\bigcap_{n=1}^{\infty} \operatorname{St}^k(x, \mathcal{B}_n) \subset X$. Thus X is strictly P_k -embedded in βX .

THEOREM 3.5. If X is strictly P_k -embedded in βX for any $k \in \mathbb{N}$, then X is $w^k M$ -space.

PROOF. If X is strictly P_k -embedded in βX , then there exists a refining sequence $\langle \mathcal{U}_n \rangle$ of open covers of X satisfying (a) and (b) of Theorem 3.4. It is easy to show that $\langle \mathcal{U}_n \rangle$ is a $w^k M$ -sequence.

THEOREM 3.6. A completely regular space X is strictly P_k -embedded in βX for any $k \in \mathbb{N}$ if and only if X is a $w^k M$ -space having $w^k M$ -sequence $\langle \mathcal{U}_n \rangle$ satisfying $\bigcap_{n=1}^{\infty} \operatorname{Cl}_{\beta x} \operatorname{St}^k(x, \mathcal{U}_n) = \bigcap_{n=1}^{\infty} \operatorname{St}^k(x, \mathcal{U}_n).$

PROOF. Let $\langle \mathcal{B}_n \rangle$ be a refining sequence of covers of X by sets open in βX satisfying (a) and (b) of Definition 2.1. If we put $\mathcal{U}_n = \{B \cap X : B \in \mathcal{B}_n\}$ for each $n \in \mathbb{N}$, then by Theorem 3.5, $\langle \mathcal{U}_n \rangle$ is a $w^k M$ -sequence and

$$\bigcap_{n=1}^{\infty} \operatorname{Cl}_{\beta x} \operatorname{St}^{k}(x, \mathcal{U}_{n}) = \bigcap_{n=1}^{\infty} \operatorname{St}^{k}(x, \mathcal{U}_{n}).$$

Conversely, let $\langle \mathcal{U}_n \rangle$ be a refining sequence of open covers of X such that $\bigcap_{n=1}^{\infty} \operatorname{Cl}_{\beta x} \operatorname{St}^k(x, \mathcal{U}_n) = \bigcap_{n=1}^{\infty} \operatorname{St}^k(x, \mathcal{U}_n)$. Let U be an open set in X containing $\bigcap_{n=1}^{\infty} \operatorname{St}^k(x, \mathcal{U}_n)$ and let W be an open set in βX such that $W \cap X = U$. Consider the set $H_n = \operatorname{Cl}_{\beta x} \operatorname{St}^k(x, \mathcal{U}_n) - W$. It follows that $\operatorname{St}^k(x, \mathcal{U}_n) \subset U$ for some $n \in \mathbb{N}$. Thus by Theorem 3.4, X is strictly P_k -embedded.

THEOREM 3.7. A completely regular space X is strictly P_k -embedded in βX for any $k \in \mathbb{N}$ if and only if there exists a refining sequence of covers of X by sets open in βX such that $\bigcap_{x=1}^{\infty} \operatorname{Cl}_{\beta x} \operatorname{St}^k(x, \mathcal{B}_n) = \bigcap_{x=1}^{\infty} \operatorname{St}^k(x, \mathcal{B}_n) \subset X$.

The proof of Theorem 3.7 is analogous to the proof of Theorem 3.6.

Keimying University Daegu, Korea.

REFERENCES

- [1] James Dugundji, Topology, Allyn and Bacon Inc. Boston (1966).
- [2] John L. Kelley, *General topology*, Springer-Verlag New York Heidelberg Berlin, (1955).
- [3] Raymond F. Gittings, Characterizations of spaces by embeddings in βX, Top. and its Applications, 11(1980), 149-159.
- [4] D.K. Burke and R.A. Stoltenberg, A note on P-spaces and Moore spaces, Pacific J. Math. 30(1969), 601-608.
- [5] D.K. Burke, On P-spaces and wΔ-spaces, Pacific J. Math. 35 (1970), 285-296.
- [6] T. Ishii, On wM-spaces I, II, Proc. Japan Acad. 46 (1970), 5-15.
- [7] K. Morita, Product of normal spaces with metric spaces, Math. Ann. 154 (1964), 365 -382.