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INTEGRALS INVOLVING SPHEROIDAL WAVE FUNCTICN AND THEIE
APPLICATION IN BOUNDARY VALUE PROBLEM OF HEAT CONDUCTION

By A. Siddiqui

1. Intreduction

The H-function of several variables has been analogously defined and repre
sented by [12]. For convenience, and brevity, however, we chall use the contra-
cted notation introduced by Srivastava and Panda [12] throughout the present
paper.

The known results ([7], p.16; [4], p.316, [10], p.33) required in the sequel
may be recalled as follows:

(i) Spheroidal wave function can be expressed as:

mn

S, (c.1)= _ﬁ;":d;’m(c)P:H(x), .

where the coefficients d’:m(c) satisfy the recursion formula [7, eg. 3.1.4] and
the asterisk* over the summation sign indicates that the sum is taken over only
even or odd values of » according as (#—m) is even or odd.
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provided that 2Re(p)> | Re(nz)|. (1.2)
(i) Ef(@=fa+1). E'f(@=E,E" 'f(@) (1.3)

where E denotes the finite difference operator. Also, we shall use the following
notation throughout the paper:
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2. Finite integrals

The main integrals to be proved here are the following:
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provided that ¢; are positive numbers such that
A +0.>0, larg(Z,—)l<—%—(Ai-'-o'z-).-?,
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The series on the right hand side of (2.1) is convergent.
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where h,k are positive integers (either % or % maybe zero). e¢; are positive
numbers such that A,+c,>0 and

larg(Z)] <5-(A,+0)m Re(p)>0, Re(p+é’o,- @)>0,

i=1, -, 7 and A, ¢; are given in (2. 1). The result (2.2) holds if #<<v (u=v+1
and |z|<1), none of %, 7o %3 -, 7, 18 zero or a negative integer with the
remaining conditions as stated in (2.1). The series on the right hand side of
(2.2) is convergent.

PROCE OF (2.1). To prove (2.1), we first express the spheroidal wave func-
tion S, (¢c; #) in the series form (1.1), and the terms of multiple contour
integrals form [12]. Now, changing the order of integration and summation,
evaluating the inner integral with the help of (1.2), and finally reinterpreting the
multiple contourintegrals thus involved by the definition of H-function of several

variables given by Srivastava and Panda [12], we get the desired result.

Regarding the interchange of the order of integration and summation it is
ohserved that x-integral is convergent if Re(p)>0; Re(p+37 le g )>0, i=
1, -+, #. The multiple contour integral converges under the conditions stated in

o q ',
(2.1). The series Lo g Pl )
=i er
converges absolutely and uniformly for all finite x ([7] ; 16—17). Hence the

interchange of order of integration and summation is justified ([1], p.504).

PROOF OF 2.2. On multiplying both sides of (2.1) by

u v .
_le(§j+a‘) (h)a/]'l'lf’(rzj%—éa‘) and applying the operation cxp(ELEa-) vields.
j—fw _f:
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Taking summation on both sides of (2.3) and using the definition of finite
difference operator (1.3), we get
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Now changing the order of integration and summation on the left hand side

of (2.4) which is justified [2,p.173], using the result (1.4) and, [finally,

replacing £ j+§ by & i and 7;+0 by 7; enable us to obtain the value of the

integral (2.2).

3. An expansion formula
In this section we derive the following expansion formula:

2 p— 3 k
W= B, o5 b= |B1Z,0-+"

7

)", Z,(1-2)"]

= % TAD) S, (e, 2, 3.1

which is valid under the same conditions as given in (2.2) with p=1. J,7p)
ie the value of the integral defined by (2.2). The series on the right hand side
of (3.1) is convergent.

PROOF. From the general theory of Sturn-Liouville differential eguations, it
follows that the function S, (e, #) form the countably infinite orthonormal set
complete in (-1, 1). Hence any arbitrary function f(x)E(—1,1) can be repre-

sented as a linear combination of these functioins, i.e.

Fo=0-2Y""F [Ses - Hiz -2 - 2,00-5)"1
4 ) 7?") i 1 ¥

el
= ):’)A.,., S, (ex) —leeegd (3.2)

=
(Following Churchil(3) (1963) p. 57, Taylor(13), (1963) p.111). On multiplying
both sides of (3.2) by S,,(c, #), integrating with respect to x over the

interval (=1, 1), and making use of the orthogonality property of spheroidal
wave functions [7,p.22 egs. (3.1, 3.2), (3.1.33)]

1 2
T =4[ IS, (e, D1 dx, for w'=n (3.2
=i

because all other terms on the right hand side of (3.3) vanish except for #'=n.
Now, in order to avoid undesirable consequences in application, we shall normalize
the functions S, (¢, 2) by the stipulation that

1
j [Smn(c, ;1:)]2 dx=1, (n—wm) is even or odd
=

for all values of c.
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Hence,
A,= (D). @49
Thus, by virtue of (3.2) and (3. 4), the desired expansion formula (3.1) follows:

REMARKS. Regarding the convergence of the series on the right hand sides
of the results (2.1), (2.2) and (3.1), it would be worth mentioning that the
ratio diro/d" is ~°/47 [6.p.17] and the ratio of gammas involving 7, is
bounded for large values of # (even or odd) and p° by virtue of the fairly well
known result [cf., [5] ; p.47]

F'rto) _
I'(r+58)

Hence the series on the right hand side of (2.1), (2.2) and (3.1) are uniformly
and absolutely convergent by M-test.

ra_s [1+0(r" D], 70,

4. Particular cases

On specializing the parameters of the H-function of several variables of (Sriva-
stava and Panda) in the results (2.1), (2.2) and (3.1), we deduce various
lknown results given earlier by Gupta and Sharma [9], Singh and Verma ([11],
p.325—32).

5. Problem of heat absorption inside the sphere

In this section, the problem of determining of a function ¢(7r, ) which
represents the temperature inside the non-homogensous sphere #<a is considered.
The temperature on the surface =g is a prescribed function, say f(x), of
spherical coordinate ‘X’ only (—1<x<1). Therefore, the fundamental equation
of heat conduction is

rﬁiﬂij_aiﬁ}i_ﬁ_{ A28 ) _ .

Hort T Tt o (=& )= +pe, Qlr, 1) =0 (5.1
where x=cosf/ and Q(7, x) is the sink of heat absorption, and K, p and ¢, are
respectively, the conductivity, density and specific heat of the material of the

sphre,

[t e, B 2.2 n ;
e Qe D=-—5 e rTl_x._,}:;

which is linearly dependent on the temperature function ¢(#,x). Thus, the
equation (5.1) becomes
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Under the boundary condition:
ba, D=~ HZ,0-5)", -, Z,a-2)"], -1<a<1

the solution of (5.2) is given by
; = [ 7\« ;
8, D=2 J1(P)S,y, Cc. x)(7) . (5°3)
where a=—%+%¢1~,_1g’?”n, J1(P) is the value of the integral defined by
(2.1), and the conditions of validity are the same as given in (2.1).

PROOF. To solve the partial differential equation (5.2), we use the ‘generalize
Legandre transform’ recently developed and defined by Gupta [8] as:

1
[ n(CO)= f F(x) S, (c, x)dz, G4
et |

with the inversion formula

oo -’?mu(c)smu(c‘ x)
plij=ir s , 5.5)

n=u ne

where N, is the normalization factor of S, (e, %) given by Flammer [7, 0.22,
equ. (3.1.33)]. It is convenient in applications to normalize the function
S (¢, x) such that N 1L

mn H'Hl:
Now, applying the transform (5.4) to equation (5.2), we obtain

23 0. 08 o ¥ i
¥ ?+2r o () §=0, (5.6)
where
1
[ e oS, (e max .7
=i —1 '
5\ J,(p), when r=ea (5.8)

which is bounded in the region 0=<r<a.
@, 3 are the roots of the indicial equation obtained after substituting r=e¢ in
(5.6), thus
a=3+5VIFIT (D)
-9 Do . _
& P i _ (i). 9)
L 0 Lo :
- 2 2 144 ;'mz(c)’ 4
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Since the solution correspending to the root 5 is inadmissible the solution of
equation (5.6) is given by

G=A,(c)7". (5.10)

In order to determine the coefficient 4,(¢), we use the equation (5.8) and get

A()=T,(p)/a"

llence substituting the value of 4,(¢) in (5.10), we get

¢=7,(») <T) .
I'inally, wusing the inversion formula (5.5) with the improved convension
N@mn=]1, we get the desired solution (5.3).
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