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1. Introduction

The exponential distribution as a failure model has wide applicability. A well
known characterization of an exponential random variable T can be obtained by
means of its lack of memory property (Feller [1, #.8]), viz.,

P(T>t+s)=P(T>)P(T>s5), 5t=>0 (1.1
which also serves to characterize a geometric random variable 7, provided that
T is positive integer-valued and that s and ¢ in (1. 1) are positive integers.

In the study of the exponential or geometric distribution as a failure model
for the description of a certain observational phenomenon, it is to be noted that
the lack of memory characterization (1.1) assumes the somewhat not readily
accessible information regarding the probability distribution. This paper presents
the following more easily applicable results which can be used to predict the
probability distribution of the failure model on the bhasis of the more readily
available knowledge concerning the expected values of the distribution truncated
from above at various points. Our results read as follows.

THEOREM 1. If T is a nonnegative random variable with finite mean and if
Fy=P(T<{), t=R, denotes the distribultion function of T, then T is exponentially
distribuled if and only if, for some constant o>0Q,

E(T N =aF(&) for all i=0 (1:2)
where TNE denotes the infimum of T and t.

THEOREM 2. A positive nondegenerate random varieble T has a geomelric
distribution (i.e., P(T=.%):pr]k_1, £=1,2,3,--, for some p>0 and g>0 satis-
Fyving p+q=1) if and only if, for some constent a>1,

E(T A D) =aP(T<¥) for all >0 (135
wheve [t] denotes the integral part of L.

2. Proof of theorem 1

We first observe that condition (1.2) entails E(T)=«a
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If T is exponentially distributed with mean a, i.e., F (t)=1—e-” ® £0, and
F({f)=0, t<0, then it is ecasily seen that (1.2) holds.

Conversely, suppose (1.2) holds. Then it is a direct consequence of Lebesgue’s
dominated convergence theorem that E(TAt) and hence F(f) are continuous in
t. Moreover, it is easily seen using integration by parts [2, Theorem 21.67, p.
419] that

E(TAD=[ s\t dF ()=t~ [[Fs)ds, t=0.
Thus (1.2) reduces to the integral equation
[ Fds+aF®=t, £>0
which is equivalent to
[, R(ds+aR®=a, £=0 @1)

where R(f)=1-F(#), i=0, which is continuous since F(#) is. Now it is easily
seen (using Lebesgue’s monotone convergence theorem and integration by parts)
that R(#) is Lebesgue integrable with f;o R()dt=E(T)=e. To solve (2.1), let

S = futt?(s)ds, >0, Then since R(#) is integrable and continuous for =0, the
Fundamental Theorem of Integral Calculus [2, Theorems 18.16—18.18, pp.285—
286] asserts that

%Q=R(t), 0 2.2
and so (2.2) is equivalent to
a%gt)-+3(t):a, £0 @.3)

subject to S(0)=0. It is easy to see that (2.3) yields the solution S(H)=a(1-
¢ ), £>0. Since R(0)=1-F(0)=1, it follows from (22) that R(D=¢ "%
=0, and so

F®O=1-R®=1-¢ "%, >o0.
Clearly, F(#)=0 whenever £<0. Hence T is exponentially distributed.

3. Proof of theorem 2

It is clear that (1.3) requires T to be integer valued. For this reason, it suf-
fices to allow ¢ to assume the values 1, 2, 3, ---, in (1.3).
If T is a geometric random variable, then, for any integer =1, we have
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n
E(T/\n)zng(T=k)+uP(T>n)
e kpg" 4 ng"

E=1

=1-0"p
=qP(T<n), where a=1/p.
Conversely, suppose that (1.3) holds for f=n>1. For k=0, 1, 2, », n, let
u,=P(T=k). Then (1.3) is equivalent to ’

n
Ek(“k_“k71)+”(1_“n)=““u' n=1, 2, 3,

n—1
or n—ﬁuk:au”, n=1, 2, 3, *

which can be written as
n—2
[@-D —kgl'uk]-i—l—un_1=auk, n=1, 2,3,

or aw, (+l-u, =au, n=1,2, 3, -
Thus, for #=1, 2, 3, -, we have
au, =1+ [(a—1)/al (au, )
=1+ [(e-D/al {1+ [(a-1/a] (an,_,)]

............................................................

=1+ [(a—1)/a] + [(a—1)/a) *+ -+ [(a—1)/a] """ (atuy)
= {1~ [(a=D/al"}/ {1- [(@-1D/al],
since aw,=1+(a—Du;=1.
Hence, P(T<n)=u,=1- [(a—1)/a] " n=1,2,3, -, i.e., T has a geometric dis-
tribution with P(T=n)=u,—u, =/} [(x—1)/a] "1 n=1,23
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