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CHARACTERIZATIONS OF THE EXPONENTIAL A:\"D 

GEOMETRIC DISTRIBUTIONS BY TRUNCATIONS 

By Kong-Ming Chong 

1. Introduction 

The exponential distribution as a failure model has wide applicability. A well 
known characterization of an exponential random variable T can be obtained by 

means of its lack of memory property (Feller [1, p.8J) , viz. , 

P(T>I+ s)=P(T>t)P(T>s) , s， 1르o (1.1) 

which also serves to characterize a geometric random variable T , providcd that 

T is positive integer-valued and that s and 1 in (1. 1) are positive integers. 

In the study 01 the exponential or geometric distribution as a failure model 

for the dcscription of a certain observational phenomenon. it is to be noted that 

thc lack of memory characterization (1. 1) assumes the somewhat not readily 

accessible information regarding t he probabili ty distribution. This paper presents 

the Iollowing more easily applicable results which can be used to predict the 

probability distribution of the fai lure model on the basis of the more readily 

available knowIedge conccrning the expccted valucs of the distribution truncatcd 

from above at various points. Our results read as fol1ows. 

T J-IEOREM 1. If T is a μamzegαtive random variab!e with fi nite mean and tf 

F(t) = P(T르1)， tER, dellotes I"g distribμtion funcNan o[ T , then T is exþonentiαfly 

dìs! ribuied zl and on!y zf, for SOJJlC constant α>0， 

E(T M) = aF(t) for all 1는o ( 1. 2) 

where T ^t denoles Ihe infinn끼， of T and 1. 

THEOREM 2. A þositive llOJzdegeκer，αte randam variable T has a geome!ric 

dis!ribιlio1l (i. e. , P(T =성 =pqk-l， k= 1, 2, 3,· ·, for some p> O mzd q>0 so7tS 

fy ing p+q=1) '1 αtd on!y il. lor some constant α>1， 

E(T!\ [1]) = αP(T드t) for all 1>0 (1. 3) 

UJkere [1] d eno!εs the integra! p，ιrl of t. 

2. Proof of theorem 1 

We first observe that con킹디on (1. 2) entails E(T) =α 
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If T is exponentially distributed with mean a. i. e. . F (I) = I - e -1/ <<’ t는O. and 

F (t) =0. 1 <0. then it is cas i1y seen that (1. 2) holds. 

Conversely. suppose ( 1. 2) holds. T hen it is a di rect consequence of Lebesgue’s 

dominatcd convergence thcorcm that E (T ^I) and hencc F (t) are continuous in 

1. 'vloreover. it is casily seen using integration by parls [2. Theorem 21. õ1. p. 

419] that 

E (T At) = Jo= sAt dF(s)=I-J~ F(s)ds. 1르O. 

Thus (1. 2) reduces to the integral equation 

J;F(s)ds+αF(I) =I. 걷O 

、vhich is equivalent to 

J;R(s)ds+ aRα)=a. 1는O (2. 1) 

where R(t) = I-F(t) . I"?O. which is cont inuous since F (t) is. Now it is easiIy 
scen (using Lchesgue's monotone convergencc theorem and integration by parts) 

l ∞ 
lhat R(I) is Lebesgue integrablc with J 0-R(I)dl=E(T ) =α. To s이ve (2.1) . let 

$(1)= f~R(상ds. 1늘O. T까hen찌s잉mc∞e R(tωtο) is inte 

FUI삐n…l(띠damentι띠a띠al Theorem of In tegral Calculus [띠2’ Theo야re히ms 1뼈8. 16-1뼈8.1않8. pp. 2잃:85-

286히，] assert5 th at 

and 50 (2.2) is equivaJent to 

dS (t] 
」옮L=R(I) . 1>0 

dS(tl 
U~~.~ + S ( I) =a. 1>0 

dl 

(2. 2) 

(2. 3) 

subject to $(0)=0. It is easy to see tbat (2.3) yields tbe solution $(/)=<<(1 

c-t/a), t르O. Since R(O) = 1-Fω)=1. it foUows from ( 2. 2) that R(t)=e -I/a,’ 

t는O. and so 

F (I) = I-R(I) = !- e -I/a. t르O. 

Clearly. F (I) =0 whenever 1 <0. Hence T is exponentially distributed. 

3. Proof of theorem 2 

lt is clear that (1. 3) requi res T to be intcger valued. For this reason. it suf. 

fices to allow 1 to assume the values 1. 2. 3, in (1. 3). 

If T is a gcomctric random variabJc, then. for any intcger 1l는1. wc havc 
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” E (T ^ ,,) = L: kP(T=k) + "P(T > 11) 
k=l 

~，. k-l 
=ι-:; kpq" • + Ilq 

k= l 

=(!-q)"IP 
=αP(T<Il). whcre a= l/p. 

Conversely, suppose thal (1. 3) holds for t =n능1. For k = O, 1. 2, …, 까 

"k=P(T드k). T hen (1. 3) is cquiva lent to 

Or 

” ει(".-1‘k← 1) 十 u(l- un)=au.n’ ,,=1. 2, 3, . 
k=l 

,, - 1 
11-L그 ltþ=aι‘’ n = l . 2, 3, . 

k=L ‘ ” 

which can be written as 

[(11 - 1) 델써+1-".→=a“，，' 11.=1. 2. 3, 

or α“n-l + 1- “ n • l =a“,,' n = l , 2, 3 •... 

Thus, for n=l, 2, 3, .. •• we have 

a",,=1 + [ (，α - 1)1α] (a"“ 1) 

=1+ [(α -1)1α] [1+ [(a- 1)1α](αu，，_)J 

=1+ [(a- 1)1α] + [(a 1)/a]2+· · + [(α -1) f.α] ,, - 1 (ακ1) 

= {1- [(α- 1)la]"J/{ 1 - [(a-1)1α] J. 

since a"l= l +(α-l)uO=l. 
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lel 

Hence, P(T드n) =t사= 1- [(<< -1)/<<] ’ . 1t= 1. 2, 3, " ', 1 . ι • T has a geometric ωs­

tribution 까，ith P(T=서=1tn- κ”-l=(l/a)[(a-1)/a] ”-l， n=1, 2, 3, • 
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