Rapid and Conventional Alloving 공정에 의한 GaAs Ohmic Contact의
특성 비교연구와 TLM의 새로운 해석 방법의 제안

(Comparison Studies on GaAs Ohmic Contacts Fabricated by Rapid and
Conventional Alloving Process and New Analysis
Method of TLM Patterns)

李鎮九*
(Jin Koo Rhee)

要約

GaAs 집적회로 제작시 ohmic contact 공정은 매우 중요하다. Rapid와 conventional alloving 공정 후,
Rs_m=R_s의 가정하에 specific contact resistivity를 측정하여 비교한 결과 rapid alloving 공정에 의한
ohmic contact의 특성(ρc=1.3~3.3×10^-7 Ω-cm²)이 우월함을 알 수 있다. Rapid alloving 시의 집중
장치, 그리고 복잡한 에너지 밀도에 의하여 ohmic contact의 특성이 향상된다고 사료된다. TLM pattern
에서 작은 값의 end contact 저항 측정을 통한 specific contact resistivity 측정시 측정오차를 최소한
으로 줄이기 위하여 normalized specific contact resistivity의 새로운 해석 방법을 제안 하였다. Rapid
alloving 공정을 이용하면 GaAs 집적회로의 대량생산시 전체공정 시간을 크게 단축할 수 있다.

Abstract

Ohmic contact process for the fabrications of GaAs integrated circuits is very important.
Specific contact resistivities, assuming Rs_m=R_s, were measured after the rapid and the conventional
alloving process, respectively. The results show that the characteristics of ohmic contact through
the rapid alloving process is much better (ρc=1.3~3.3×10^-7 Ω-cm²). This is probably due to
intensive and compound energy densities during the rapid alloving process. New analysis method of
TLM patterns viz. measurements of normalized specific contact resistivities are proposed to reduce
measurement errors that could occur when measuring the small contact end resistances. The
adoption of rapid alloving process for the mass production of GaAs integrated circuits could greatly
reduce the total processing time.

I. 서 론

최근에는 정보의 다양화, 대량화 및 고속화에 대응할 수 있는 시대적 요구로 충족 시킬 수 있는 새로운 반도체 재료와 집적회로에 대한 연구가 급발히
전행되고 있다.1,2 Gallium Arsenide (GaAs)를 이용한 집적회로 제작 공정에서 가장 기본이 되고 중요한 공정은 ohmic contact이다.2 그리고 일반적으로 ohmic contact 제작과의 특성은 specific contact resistivity의 측정 방식에 있다. Specific contact resistivity의 측정은 Kelvin Resistors의 외연 방법3,4 또는 Transmission Line Model (TLM)5-7에 의한 방법이 가장 많이 사용되고 있다.

본 논문에서는 먼저 conventional alloying과 rapid alloying 공정 후의 ohmic contact의 실험을 통하여 비교 검토하고, 종래의 specific contact resistivity의 측정오차를 줄이기 위하여 end contact resistance의 측정없이 normalized specific contact resistivity를 측정하여 ohmic contact의 특성을 분석하는 방법을 새로이 제안하였다.

II. TLM의 새로운 해석방법

Ohmic 금속 채료의 sheet resistance와 전류의 측 면확산을 무시하고 그림 1(a)에 도시된 바와 같은 TLM pattern과 그림 1(a)의 등가 회로로서 다음과 같은 미분방정식이 유도된다.1,2

\[\frac{dV(x)}{dx} = -\frac{R_{sm}}{W} I(x) \] \hspace{1cm} (1)

\[\frac{dl(x)}{dx} = -W\left(\frac{1}{\rho_{cm}} + j\omega C\right)V(x) \] \hspace{1cm} (2)

단, 여기서 \(V(x) \) 및 \(I(x) \)는 각각 전압 및 전류이고, \(\rho_{cm} \)은 alloying 후의 변화된 specific contact resistivity(\(\Omega \cdot \text{cm}^2 \)), \(C \)는 포토용량(F/cm\(^2\)), \(R_s \)는 반도체 활성층의 sheet resistance, \(R_{sm} \)은 metal-semiconductor contact 아래에서 alloying 후 변화된 sheet resistance이고,1,2 \(\omega \)는 각 주파수이다.

미분방정식 (1)과 (2)의 해는 각각 다음과 같다.

\[V(x) = A e^{-\gamma x} + B e^{+\gamma x} \] \hspace{1cm} (3)

\[I(x) = \frac{1}{z} \left(A e^{-\gamma x} - B e^{+\gamma x}\right) \] \hspace{1cm} (4)

단, \(A \)와 \(B \)는 적분 상수이며 \(\gamma \)와 \(z \)는 각기 propagation constant 및 특성 impedance 이다.

\[r = \left[\frac{R_{sm}}{\rho_{cm}}(1+j\omega C\rho_{cm})\right]^{1/2} \] \hspace{1cm} (5)

\[z = \frac{1}{W} \left[\frac{R_{sm} \rho_{cm}}{1+j\omega C\rho_{cm}}\right]^{1/2} \] \hspace{1cm} (6)

그림 1. 전송선 모델

(a) ohmic contact and
(b) 등가 회로

Fig. 1. Transmission line model.
(a) an ohmic contact and
(b) an equivalent circuit of the contact.

DC 측정을 수행한 경우에 대해서 상기 식(5)와 (6)은 다음과 같이 된다.

\[\sigma = \frac{1}{L_{tm}} \left(\frac{R_{sm}}{\rho_{cm}}\right)^{1/2} \] \hspace{1cm} (7)

\[z = \frac{1}{W} \left(\frac{R_{sm} \rho_{cm}}{\rho_{cm}}\right)^{1/2} \] \hspace{1cm} (8)

단, 여기서 \(L_{tm} \)은 transfer length이다.5

Contact resistance, \(R_c \)는 식(3), (4) 및 (d), (4)에 0의 조건으로부터 구하면 다음과 같다.

\[R_c = z \cdot \coth(a \cdot d) \] \hspace{1cm} (9)

TLM pattern으로부터 ohmic contact의 각종 parameter들이 측정될 수 있다. 즉, 각기 서로 다른 길이, \(\ell \)의 변화에 대한 전 저항, \(R_t \)는 다음과 같은 식으로 표현될 수 있다.5

\[R_t = \frac{2}{W} \left(\frac{R_{sm} \rho_{cm}}{\rho_{cm}}\right)^{1/2} \coth(a \cdot d) + \frac{R_s}{W} \ell \] \hspace{1cm} (10)

식(9)을 식(10)에 대입하면 \(R_t \)는 식(11)과 같다.

\[R_t = \frac{2}{W} \left(\frac{R_{sm} \rho_{cm}}{\rho_{cm}}\right) \coth(a \cdot d) + \frac{R_s}{W} \ell \] \hspace{1cm} (11)

만약 \(d > a \)이면 식(11)은 다음과 같다.

\[R_t = 2 \frac{R_{sm} L_{tm}}{W} + \frac{R_s}{W} \ell \] \hspace{1cm} (12)
여기서 \(R_{sm} = R_s \)를 가정하면 식(12)는 다음과 같다.

\[
R_t = \frac{\varepsilon_s R_s L_t}{W} + \frac{R_s}{W} \varepsilon
\]

(13)

단, \(L_t \)는 \(R_{sm} - R_s \)의 가정하의 transfer length이다. 따라서, 식(13)을 도시하면 \(R_s \)는 slope로 부터 구할 수 있으며, transfer length는 \(L_t \) = \(\varepsilon_s / 2 \)로 용이하게 구할 수 있다. 이때 \(\varepsilon_s \)는 \(R_s = 0 \) 일때의 \(\varepsilon \)의 값이다. 그리고 \(R_{sm} = R_s \)로 가정한 경우의 specific contact resistivity, \(\rho_c \)는 다음과 같이 구할 수 있다.

\[
\rho_c = R_s \left(\frac{\varepsilon_s}{2} \right)
\]

(14)

만약 \(R_{sm} \neq R_s \)인 경우의 specific contact resistivity, \(\rho_{cm} \)은 다음과 같다.

\[
\rho_{cm} = R_{sm} L_t
\]

(15)

위와 같은 경우에는 일반적으로 TLM 측정으로부터 \(R_{sm} \)과 \(L_t \)를 구하기 어렵기 때문에 contact end resistance를 측정하는 방법으로 \(\rho_{cm} \)을 구하였다. 그러나 일반적으로 contact end resistance의 값이 \(\Omega \) 이하로 매우 작기 때문에 측정을 포함하는 오차로 인하여 \(\rho_{cm} \)의 정확한 측정이 어려다. 따라서 이하만큼의 contact end resistance의 측정 오차로 인한 \(\rho_{cm} \)의 측정 오차를 최소화하기 위하여 다음과 같은 normalized된 \(\rho_{cm} \)과 \(\rho_c \)의 값을 비교하여 ohmic contact의 특성을 비교할 수 있다.

\[
\frac{\rho_{cm}}{L_t} = R_{sm} L_t
\]

(16)

또한

\[
\frac{\rho_c}{L_t} = R_s L_t
\]

(17)

III. 실험

GaAs wafer는 (100)으로 oriented된 semi-insulating으로써 3" wafer이다. GaAs wafer는 약 900Å의 \(Si \) \(N_4 \)가 deposit 되어 있다. n층은 \(^{28}Si \) 이온을 선택적으로 주입하였으며, 이때 dose는 \(2.9 \times 10^{12} \text{atoms/cm}^2 \), 주입 energy는 120KeV이다. 또한 GaAs 점적 회로의 공정을 simulation 하기 위한 설계이므로, n⁺층은 n층과 같이 선택적으로 \(^{28}Si \) 이온을 200KeV로 주입하였다. 이때 dose는 \(2 \times 10^{12} \text{atoms/cm}^2 \)이다. 약 1600Å 정도의 \(SiO_2 \)를 \(Si \) \(N_4 \) 위에 deposit한 다음에 800°C의 conventional furnace에서 20분간 annealing을 했다. Annealing은 furnace 내부의 \(90\% \)의 \(N_2 \)와 \(10\% \)의 \(H_2 \)로 구성된 forming gas가 계속

으로 호르는 상태에서 행하였다.

Annealing 후에 갈 GaAs wafer 상에서 Silox을 제거하고 test pattern을 제작한다. 즉, ohmic contact을 만들기 위하여 Au: Ge (88:12) alloy를 약 1670Å의 두께로 GaAs 위에 deposit 하고 그 위에 약 330Å 정도의 Ni를 deposit 했다. 그 후 lift-off 공정을 통하여 TLM을 제작한다.

Conventional alloying과 rapid alloying의 결과를 비교하기 위한 실험 단계이므로 여기서 3" wafer를 1/2로 나눈다. 이에 conventional furnace alloying 실험은 forming gas (90N\(_2\) : 10H\(_2\))을 15SCFH/HFC로 계속 손으로 주면서 450°C에서 90sec 간 alloying을 행하였다. 또한 rapid alloying 실험은 forming gas (90N\(_2\) : 10H\(_2\))을 2L/min로 계속 손으로 주면서 450°C에서 각각 20, 25 및 30sec간 행하였다. 또한 planar 접적 회로의 공정을 simulation 하기 위한 설계이므로 planar 구조를 가진한 u-mesa 기반에 약 1100Å 정도의 plasma \(Si \) \(N_4 \)를 deposit 한후에 Ti/Pt/Au (800Å/400 Å/3200Å)의 gate metal을 lift-off 공정으로 측정한 TLM pattern을 제작했다.

IV. 측정

Conventional alloying과 rapid alloying 공정에 의한 planar ohmic contact의 특성을 비교 검토하기 위하여 \(R_{sm} = R_s \)인 가정하에 TLM pattern에서 측정한 data는 그림 2에 대표적으로 도시하였다. 그림 2에서 wafer 150C는 conventional alloying 공정에 의한 측정결과로서 3개의 3" 반복 wafer로 부터 측정된

![그림 2. Conventional alloying된 wafer 150C와 rapid alloying된 wafer 150R 측정 data](image-url)
상기에서 기술한 바와 같이 rapid alloying 공정에 의한 ohmic contact의 특성이 유용함을 증명하고, 재현성을 확인하고 rapid alloying의 최적조건을 구하기 위하여 (100) oriented 3\,\text{\textdegree} GaAs wafer 3개를 각기 rapid alloying 시간을 20, 25 및 30sec로 변화 시키면서 $R_{\text{sm}} - R_s$ 값과 R_{sm} 값에 대해서 측정된 specific contact resistivity의 값과 표 3에 수록하였다. 측정된 specific contact resistivity는 $1.3 \sim 3.3 \times 10^{-7} \, \Omega \cdot \text{cm}^2$의 범위에서 변화하고 있다.

또한 측정치의 정확성을 비교 검토하기 위해서 sheet resistance, R_s를 TLM과 van der Pauw pattern에서 각각 측정한 값들로 표 3에 수록하였다. 표 4에는 $R_{\text{sm}} - R_s$ 값에 대해서 normalized specific contact resistivity를 각각 수록하였다.

V. 결 론
Conventional alloying과 rapid alloying의 공정결과를 TLM patterns에서 측정한 데이터를 표 1과 표 2에서 비교하면 rapid alloying 공정에 의한 ohmic contact의 특성이 conventional alloying에 의한 ohmic contact에 비해 많은 개선을 보인다.

표 1. Conventional alloying(CA)과 rapid alloying(RA) 공정에 의한 측정치 비교

<table>
<thead>
<tr>
<th>wafer</th>
<th>alloying 방 법</th>
<th>$\rho_c , (\Omega \cdot \text{cm})$</th>
<th>$R_s , (\Omega/\square)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TLM</td>
<td>van der Pauw</td>
</tr>
<tr>
<td>150C</td>
<td>CA</td>
<td>4.1×10^{-4}</td>
<td>250 ± 19</td>
</tr>
<tr>
<td>151C</td>
<td>CA</td>
<td>4.5×10^{-4}</td>
<td>252 ± 20</td>
</tr>
<tr>
<td>152C</td>
<td>CA</td>
<td>3.9×10^{-4}</td>
<td>242 ± 18</td>
</tr>
<tr>
<td>150R</td>
<td>RA</td>
<td>4.3×10^{-4}</td>
<td>215 ± 15</td>
</tr>
<tr>
<td>151R</td>
<td>RA</td>
<td>4.5×10^{-4}</td>
<td>223 ± 16</td>
</tr>
<tr>
<td>152R</td>
<td>RA</td>
<td>4.2×10^{-4}</td>
<td>215 ± 16</td>
</tr>
</tbody>
</table>

표 2. Normalized specific contact resistivity의 비교

<table>
<thead>
<tr>
<th>wafer</th>
<th>alloying 방 법</th>
<th>$R_{\text{sm}} , L_{\text{tm}} , (\Omega \cdot \text{cm})$</th>
<th>$R_s , L_1 , (\Omega \cdot \text{cm})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>150C</td>
<td>CA</td>
<td>0.36</td>
<td>0.32</td>
</tr>
<tr>
<td>151C</td>
<td>CA</td>
<td>0.38</td>
<td>0.34</td>
</tr>
<tr>
<td>152C</td>
<td>CA</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>150R</td>
<td>RA</td>
<td>8.5×10^{-3}</td>
<td>8.3×10^{-3}</td>
</tr>
<tr>
<td>151R</td>
<td>RA</td>
<td>8.8×10^{-3}</td>
<td>8.4×10^{-3}</td>
</tr>
<tr>
<td>152R</td>
<td>RA</td>
<td>8.5×10^{-3}</td>
<td>8.2×10^{-3}</td>
</tr>
</tbody>
</table>

표 3. Rapid alloying 결과 측정치

<table>
<thead>
<tr>
<th>wafer</th>
<th>RA시간 (sec)</th>
<th>$\rho_c , (\Omega \cdot \text{cm})$</th>
<th>$R_s , (\Omega/\square)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TLM</td>
<td>van der Pauw</td>
</tr>
<tr>
<td>206R</td>
<td>20</td>
<td>$(3.3 \pm 0.1) \times 10^{-7}$</td>
<td>130 ± 10</td>
</tr>
<tr>
<td>207R</td>
<td>25</td>
<td>$(2.2 \pm 0.09) \times 10^{-7}$</td>
<td>145 ± 15</td>
</tr>
<tr>
<td>208R</td>
<td>30</td>
<td>$(1.5 \pm 0.1) \times 10^{-7}$</td>
<td>140 ± 13</td>
</tr>
<tr>
<td>209R</td>
<td>25</td>
<td>$(2.3 \pm 0.1) \times 10^{-7}$</td>
<td>145 ± 14</td>
</tr>
<tr>
<td>210R</td>
<td>30</td>
<td>$(1.3 \pm 0.1) \times 10^{-7}$</td>
<td>146 ± 15</td>
</tr>
</tbody>
</table>

표 4. Normalized specific contact resistivity의 비교

<table>
<thead>
<tr>
<th>wafer</th>
<th>RA시간 (sec)</th>
<th>$R_{\text{sm}} , L_{\text{tm}} , (\Omega \cdot \text{cm})$</th>
<th>$R_s , L_1 , (\Omega \cdot \text{cm})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>206R</td>
<td>20</td>
<td>7.0×10^{-3}</td>
<td>6.5×10^{-3}</td>
</tr>
<tr>
<td>207R</td>
<td>25</td>
<td>6.8×10^{-3}</td>
<td>5.8×10^{-3}</td>
</tr>
<tr>
<td>208R</td>
<td>30</td>
<td>6.0×10^{-3}</td>
<td>4.6×10^{-3}</td>
</tr>
<tr>
<td>209R</td>
<td>25</td>
<td>6.3×10^{-3}</td>
<td>5.8×10^{-3}</td>
</tr>
<tr>
<td>210R</td>
<td>30</td>
<td>5.0×10^{-3}</td>
<td>4.4×10^{-3}</td>
</tr>
</tbody>
</table>
보다 특성이 매우 양호함을 알 수 있다. 그 이유는 Rapid alloying의 절중적이고 복합적인 에너지 밀도에 의하여 ohmic contact의 특성이 향상된다고 사료된다. Ohmic metal의 표면을 그림 3의 microphotograph로 도시하였다.

그림 3(a)는 conventional alloying 공정(450℃, 90초) 결과와 그림 3(b)는 rapid alloying 공정(450℃, 20초) 결과의 microphotograph를 각각 나타내었다. 그림 3 (a)와 (b)의 ohmic metal 표면 상태는 거의 비슷함을 알 수 있다.

Rapid alloying 공정의 alloying 온도가 450℃인 경우 최적 조건을 구하기 위해서 alloying 시간을 20, 25, 30sec로 변화시키면서 공정한 결과를 측정한 specific contact resistivity data를 표 3에, normalized specific contact resistivity data를 표 4에 각기 수록하였다. 표 4에 수록된 normalized specific contact resistivity는 Contact end resistance 측정시에 발생할 수 있는 측정 오차와 복잡한 측정 장치를 피할 수 있다. 또한 normalized specific contact resistivity의 data를 비교하여도 ohmic contact의 특성을 쉽게 판단 할 수 있다.

본 rapid alloying의 실험 결과를 해석적으로 분석하기 위하여 specific contact resistivity와 alloying 시간에 대한 변화된 data를 그림 4에 도시하였다.

그림 4. Specific contact resistivity와 rapid alloying 시간과의 관계

Fig. 4. Specific contact resistivity vs Rapid alloying time.

그림 4로 부터 rapid alloying 시간과 ρ_c의 관계를 실질적으로 구하면 다음과 같다.

$$\rho_c = 1.7 \times 10^{-4} e^{-0.08t}$$ \hspace{1cm} (18)

단, 여기서 t는 rapid alloying 시간이다.

즉, alloying 시간이 길어질수록 specific contact resistivity는 감소함을 알 수 있다. 그리고 현재까지 발표된 ρ_c값은 검토해 보면 약 $5 \times 10^{-7} Q \cdot cm^2$ 정도이다. 그러나 그림 5에 도시되어 있는 microphotograph에서 알 수 있는 바와 같이 alloying 시간이 길어질수록 metal의 이동이나 surface 상태가 고르지 못함을 알 수 있다. 따라서 본 연구에서는 rapid alloying의 온도가 450℃이고 alloying 시간이 25sec인 경우가 planar 접적회로 공정에 사용될 수 있는 양호한 ohmic contact을 하기 위한 최적의 공정조건임을 알 수 있다. 또한 rapid alloying 공정을 이용하면 GaAs 접적회로를 대량으로 제작시에 전체 공정 시간을 크게 단축시킬 수 있다.
Fig. 5. Smoothness of the ohmic metal surface (50×80μm² pattern).
(a) wafer 206R.
(b) wafer 209R and wafer 210R.

参考文献

