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Abstract — An improved conical model is presented for the shape of a liquid metal ion source.
In this model, we use the Taylor cone of the conducting fluid as the zeroth-order configuration
and treat electrohydrodynamically the first-order contribution of its surface deformation. A set
of first-order electrohydrodynamic equations of the fluid are analytically solved by assuming that
the apex protrusion h due to the applied electric stress is associated only with the change in
the apex region of r<a. Here, a is a parametric constant. This assumption leads to take the angular
deformation {=(r/aYe(t) for »<a and (a/r)e for r>a, where the exponent s is a quantity associated
with the evolved shape. The use of { in the set of equations makes the breakdown voltage of
the surface have the form Vc(r, h)=V,(h)+ Vi(r, h) when the fluid has the protrusion % at the apex.
Here, Vi(h) is the voltage needed for sustaining the zeroth-order shape of the fluid surface and
Vi(r, h) is the additional voltage for the onset of instability which is the ion emission from the
apex. The obtained critical voltage V. is found to be in reasonable agreement with experiments
and, more importantly, explains the local instability which is physically required. It is physically
argued that for V>V, >0 and 0<s<0.2. This implies that the conducting fluid changes from
the Taylor cone to a cusp near the onset of instahility.
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1. Introduction

Stability of an electrically stressed conducting
fluid has been studied for more than a century since
Lord Rayleigh’s work [1]. This subject has releva-
nce to (i) the mechanism responsible for the forma-
tion of thunderstorms [2], (ii) the measurement of
the size and density distribution of atmospheric
droplets[3], (iii) the description of self-gravitating
viscous liquid which can serve as a first approxima-
tion to the model of an oscillating star [4], and
(iv) other applications [5]. Recently, the role of sta-
bility has been stressed in the study of operation
of technological devices such as electrohydrodyna-
mic ion scurces [6-8], i.e., the liquid metal ion sou-
rces (LMIS). Even though Taylor [9] made a great
success in explaining the shape and stability of the
conducting fluid, the dynamics of LMIS is not satis-
factorily described using a stationary Taylor cone
model [10, 11]. A more rigorous and hydrodynamic
approach is required [12-15].

In the current work, we treat electrohydrodyna-
mically the shape and instability of the LMIS. We
extend our model of LMIS presented in previous
works [15-17] by making a more exact mathemati-
cal treatment of the evolution of the shape. The
Taylor cone is used as the basis (i.e. the zeroth-or-
der shape) and then we introduce a first-order
shape correction to describe a change of the fluid
surface. As a more realistic form of the surface de-
formation in the current work, we take {=(a/r)e
for r>a, where { is the angular deviation of the
surface from the Taylor cone and ¢ is the maximum
value of { at »=aq. This form of { satisfies the condi-
tion that » { is finite as r approaches infinity, which
is the case. In the previous work, we took {=(z/r)"°
¢ for r>a which leads to the divergence of r { as
7 approaches to infinity. To solve the Laplace equa-
tions for electric and velocity potentials, ® and
we use the same scheme as in the previous work
[15-17]. Since the Laplace equation is unsolvable
for arbitrary boundaries such as the fluid surface,
we make an contribution order-analysis of @ and
Q Then electrohydrodynamic analysis of the first-
order shape leads to understanding of instability
of the fluid shape.

We explain the current model and derive a set
of electrohydrodynamic equations to be satisfied by
the electrified conducting fluid in section 2. In sec-
tion 3, we find the first-order solutions of the obtai-
ned shape equations and discuss the instability of
the electrified fluid surface. Conclusions are made
in section 4.

2. Conical Fluid Surface Model

An electrically stressed conducting fluid has the
shape of the Taylor cone at a certain applied voltage
for a sophisticated counter-electrode [9]. As the
voltage increases, the fluid deforms its shape and
eventually evolves to breakdown of the fluid sur-
face. The evolution of the shape can results in a
protrusion around the cone apex. Thus we use the
Taylor cone as the basis and introduce a change
described by an angular deformation ¢ (refer to Fig.
.

In order to describe the free fluid surface, we
define the shape function F by

F(r. 6, H=0,+{(» nH—6. §8)]

where 8,=130.7° and 0=0, represents the Taylor

cone as shown by the dotted cone in Fig. 1. Then

the evolving shape of the fluid is specified by F=0.
For a charged or electrically stressed surface, its

equilibrium is given by the Laplace-Young equa-

tion

1

(VD) —Y( 1 w) =0, ®

+
AP 8n . R1 Rg ’

where AP is the pressure difference across the in-
terface, @ the electric potential, Y the surface ten-
sion of the fluid, and R, and R, are the principal
radii. To apply the Laplace-Young stress condition
for finding the stable shape of the fluid, we will
obtain analytic forms of AP, ® and 1/R,+ 1/R..
When a voltage V is applied between the conduc-
ting fluid and counter-electrode, the potential &
satisfies the following two boundary conditions

=V at 0=0,+( (on the fluid surface) (3)

Dd=0 at 7:7()[P1/2(COSG)] "2
(on the counter-electrode), (4)
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D=0

r= blR Jcosal

Fig. 1. Conical fluid surface model. The fluid surface
is given by 8=6,+ {(r), where 8,=130.7° refers
to the zeroth-order surface and {() is the
angular deformation at position ». The dotted
line is the Taylor cone of half cone angle a
where a=n—0o. The { results from the spatial
evolution of the apex region and the shape cha-
nge in the region of r<a, where a is defined
such that there is no change in shape for r>a.

where 7 is the axial distance between the cone apex
and the counter-electrode and Pj,(cosB) is the Le-
gendre function of degree 1/2 (refer to Fig. 1).
To obtain the hydrodynamic pressure AP, we co-
nsider fluid flow. It is convenient to treat the velo-
city potential £ defined such that the fluid velocity
U= —VQ. The potential Q) satisfies the two boun-
dary conditions
dF oF
7— 7— VQ-VF=0
at 0=6y+& (on the fluid surface) (5)

n-vQ=0 at 0=n (along the z-axis), (6)

where n is a unit vector normal to the fluid surface
and is defined by

_VF
"= R ™

Equation (5) follows from the fact that the fluid sur-
face is specified by F=0. Equation (6) expresses
the condition that along the z-axis, the fluid velocity
has only a vertical component. Then the hydrodyna-
mic pressure P is obtained from the following form
of Bernoulli’s equation

ol

1
—p——+ ——p(VQP+P= :
p o 2 p(VQ)Y’+ P=constant 8)

a1333]R|, A3 A2E, 1994

where p is the mass density of the fluid. The second
term in Eq. (8) is quadratic and is neglected in the
current work.

From Eqgs. (1) and (7), the curvature of the free
fluid surface is written as

1 1
<El—+E>:Vn
_ 1 1
- rtand \/TW
Li( r ot/or )
#ar / 1+7%0%/or?

Since the fluid surface is not a coordinate surface,
the boundary conditions imposed on it cannot be
directly applied. However, we can reduce them to
useful forms by making the Taylor expansion of ®
and Q about 0=0,. In this case, each potential is
given as a sum of contributions of all-order with
respect to {. Keeping terms up to the first-order,
we will obtain a set of equations of the first-order
(17].

By making the Taylor expansion of ®(0=86,+Y)
about 6=0,, Eq. (3) is written as

d>(90+§):q>(eo)+c('%)eo+ =V, (10)

The @ is given as a sum of all-order contributions:
O=Qy+ P+

We substitute this into Eq. (10) and set the same-
order term on both sides to be equal. Then the
boundary conditions of the zeroth- and first-order
® are
Dy(B) =V, v
0D,

@1(80)= — C( W—%O' (12)

where the subscript number represents the order
of contributions.

Similarly, the Taylor expansion of Q(0=0,+()
in Egs. (5) and (8) yields two first-order relations
associated with Q:

Bh= 5 0
ap=p( ), 19
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Here, the zeroth-order velocity potential € is zero.
This imply that no flow is allowed in the zeroth-or-
der analysis as in the static analysis.

The curvature given by Eq. (9) is also expanded
up to the first-order as follows.

RS SIS BN
R, R, rtana rsin®Qy
1L 0 (508, .
Y or (r or >+ (15)

Thus, we obtain the zeroth- and first-order curva-
tures

1 1 1

<E+ 7?2_>o: rtang (16)

<1+1>:c+1a<ﬁ,a§
0

R R e T e D

where a==n—8,, the half angle of the Taylor cone
apex.

As done in the previous work [15-17], the ze-
roth-order analysis can be easily made by using
Egs. (2), (4), (11), and (16). As a stress-balanced
shape, the so-called Taylor cone given by 6=0y(=
130.7°) is obtained at a certain voltage V7. The exp-
ressions for @, and V4 are

@7, 0)=V[1—/r)’*> Pys(cosh)]. (18)
V= ‘éﬂl@ﬁ— \/ 2rrgYcota (19)

- }) 0‘5(C0890)

This is the same as obtained by Taylor [9]. It is
important to note that the Taylor cone does not,
by itself, imply instability of the fluid at the apex.
The reason is that the stress balance designated
by AP=1{ is satisfied across the entire surface of
the cone, whereas the instability is a localized ra-
ther than a global phenomenon. Furthermore, Vi
is not the breakdown voltage initiating the onset
of instability but is the voltage sustaining the Taylor
cone, ie. the zeroth-order shape when the fluid has
no protrusion from the apex. To describe the local
instability, we should obtain the breakdown voltage
as a function of ». It follows that the fluid shape
is different from the Taylor cone. The desirable re-
sults for the realistic shape should be obtained by
taking into account the first-order correction in a

set of the shape equations.

3. Solutions of The First-Order
Electrohydrodynamic Equations

In the previous section, we obtain a set of equa-
tions for the first-order analysis. They are the first-
order boundary conditions given by Egs. (12)-(14),
the fixed boundary conditions given by Eqgs. (4) and
(6), the first-order curvature given by Eq. (17), and
the Laplace-Young equation for the first~order sur-
face. In solving these equations, we find deformation
{, electric potential ®, and velocity potential & self-
consistently. In general, an exact treatment is impo-
ssible. However, we can make reasonable approxi-
mations to find § &, and Q.

We assume that a protrusion around the apex
is only due to the change of the region of r<a,
where a is a quantity dividing dynamic and static
regions. This implies that the evolved shape begins
to coincide the basis shape at r=4. Then the angu-
lar deformation § has the following asymptotic
form

{—>h sina/r as r > ©,

where & is the protrusion length. The »-dependence
of the limiting form of ¢ is found to he realistic
since r § approaches a finite value. Equations. (13)
and (17) also imply that § should be written as a
function of 7. A finite value of { at =0 (i.e. at the
cone apex) is found to lead to a divergent @ and
then { should be zero at r=0. Thus, we let

(= [ =@/ay &)
=M =

for r<g
for r>a, (20)
where the exponent s is positive and will be deter-
mined later. This is shown in Fig. 2. The deforma-
tion £ has time-dependence &(f) during the evolu-
tion process while §” does not at all (refer to Fig.
3). The deformation is zero at »=0, which is requi-
red as mentioned above. It is to note that the cur-
rent formof { is different from that used in the
previous work [16, 17]

Substituting Eq. (20) into Eq. (12), we obtain the
first-order boundary conditions for @ and ®”. The
solution @ which satisfies the Laplace equation V2
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d=0 and the associated boundary conditions is

—05(c0s0)

o= P, 6, H=—V
2 sin6

@/r)™ &)

Py n.s(COSG)
P 1 95(cosBy)

+ Y B,(r/r)"P, (cos9) |

[(r/a)s +0.5

P_y5(cosby)
2sin0,

P_y5(cosb)
0.5
e/ P_5(cosBy) ' @)

Lo, 9=V (a/r)

where P,(cos0)=0 and v,=0.5, vi=1.9, v,=34, etc.
The superscripts > and < represent the regions
of r>a and r<a, respectively. Hereafter, we omit
the subscript “1” for convenience when the supers-
cript > or < are used. The B,’s are determined
from the continuity of the potential and its deriva-
tive at 7=a. The #=1 and higher terms in & make
negligible contributions in the region of interest (i.
e., the small r-region) and will be omitted afterwa-
rds.

Similarly, substituting Eq. (20) into Eq. (13) yields
the first-order boundary conditions for Q> and Q°.
Thus the potential © which satisfies the Laplace
equation V20 =0 and the associated boundary con-

ditions is
0
Q= 00,0, )= —a? %

e Py, (—cosb)
2+s

[ (OP;.(— c0s8)/30)s,

+> Cur/a)" P, (— cose)} ,

Q=0 (22)

where [0P.(c0s0)00]s=0 and uy=4.0. The negative
sign in the argument of the Legendre function is
chosen so that Q° satisfies the boundary condition
givenby Eq. (6). Since even the leading term in the
summation in ®° is negligible compared to the first
term in the square bracket, we omit all terms in
the summation.

Since fluid flow is allowed around the apex, we
calculate AP; for »<a. Substituting Eq. (22) into Eq.
(14) for AP;, we obtain the first~order hydrodyna-
mic pressure

P23, A3d 23 1994

Mo Park
. enc
AP]*F)( ot )
_ ) wes  Pai(—cosb) et
= —pa(r/a)’ (S ) e

LOP; (—c0s6)/00 1y,

The first-order stress balance is obtained by collec-
ting the first-order contribution terms from the La-
place-Young equation given by Eq. (2):

(VoY
8n

AP+ ]l—v(—1~+ 1—)1:0, (24)

R, R,

where AP| is given by Eq. (23), (1/R\+1/Ry), is
obtained from Eqgs. (17) and (20), and the first-order
electric stress is

[ (V(D)Z j] _ 1 |: 6CI>0 8@1 . C 6<D0 62‘1)0 :|
gn b amr Ll g0 90 a8 9 I
(25)

where  is given by Eq. (20), ®, given by Eq. (18),
and &, given by Eq. (21).

We assume the harmonic time-dependence of &
(&): e®)=ge . The fluid undergoes the dynamical
instability as w? becomes negative. Thus the instabi-
lity condition is w®*=0. Since AP;=w?X[a factor]
as given by Eq. (23), the instability condition is AP,
=0. When AP,=0, Eq. (24) yields

V= Vl(r, h)
4 sinf, sin~ a+s(2+s)
AWy —————, (26
P~ g5(cosfl) oy V0 Diairr—D, %
where
D= 058 Prosileosb) g o 2
sina —Pp5+,(cosby)
5+ P_g54s
= 05Fs Prosudeos) 1oy o otn @28)
sind. —Pys.(cosBy)

In Eq. (26), we replace », by ro—#h to take into ac-
count the effect of the apex protrusion. The voltage
Vi{r, h) is the additional voltage required for the
onset of instability at the position r distant from
the apex. Therefore, when the fluid has a protrusion
h, the critical voltage V¢ for the onset of instability
is givenby [17]:

Velr, =Voh)+Vilr, h), (29)

where V; is the voltage needed for sustaining the
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zeroth-order shape. It is clear that Vy is not Vr
which is the voltage for formation of the Taylor
cone. That is, V7 and V, are the voltages for the
zeroth-order shape before and after evolution from
the Taylor cone, respectively. Then V; is obtained
by replacing », by 7,-h in the form of V; given by
Eq. (19).

Since V, changes with position », V¢ explains the
local instability. This result is much different from
Taylor's or other static results. Chung et al. [17]
have already obtained the same form of V¢ given
by Eq. (29). However, both { and V; obtained in
the current work are different from those obtained
in the previous work. It is found that the current
result is more realistic and more physically meani-
ngful.

The problem in the current model is that quanti-
ties a and s are not uniquely determined. Unfortu-
nately, complications get worse because a and s are
intercorrelated. The parametric constant a is defi-
ned so that the fluid surface has no change for r>a.
The a is used as a boundary value in dividing the
whole region into the inside region of »<g and the
outside region of r>a. Thus the best choice of a
can be made so that the two set of electric poten-
tials @< and &~ and velocity potentials Q° and
can be matched most smoothly. Instead of such a
numerical work, we use the geometric relation bet-
ween a and 4 and choose an appropriate value of
a/h. From the geometry shown in Fig. 1, we the
following relation

a/h=sino/e (30)

In calculation of Vi, we choose a/h=2, i.e. e=0.38.
This implies that the region undergoing change is
two times as large as protrusion.

The quantity s represents the curvature of the
evolved shape as in Eq. (20) (refer to Fig. 2). Even
though we cannot calculate s directly, we obtain the
range of s by two physical requirements. First, it
is physically required that V¢ increases with increa-
sing r. That is, D; given by Eq. (27) is positive. It
follows that

0<s<0.6 3D

Secondly, it is also physically required that the ra-

€ |m o= - -

a r

Fig. 2. Angular deformation { The ¢ is given Eq. (20)
in the text. It has the maximum value ¢ at r=a
and has the limiting value of 4 sina/» as r — la-
rge.

dial velocity U,= — 02 °/9r is negative for »<a. This
is the relative velocity with respect to the velocity
ofthe apex, ie, the origin of the coordinates. By
Eq. (22), this requirement reduces the inequality

0<s<0.2 (3D

We examined the fluid shape for s=0.1 and s=0.2
using the numerical table of Legendre functions
[18]. 1t is found that either choice of s=0.1 or s=
0.2 yields almost the same value of V¢ in the region
of interest. Therefore, we take s=02 in obtaining
the numerical values of V() as shown in Table
1. For the present, we can not determine the exact
value of s. This reflects the fact that in general,
the Laplace equation cannot be analytically solved
for an arbitrary geometry, i.e. a free fluid shape.
Through the numerical calculations over the entire
range 0<s<0.2, we can find the most appropriate
value of s, which is not done in the current work.

Now we discuss the property of the time-depen-
dence term e(). By the Laplace-Young equation gi-
ven by Eq. (24), AP, is positive for V<V, and nega-
tivefor V>V,. This implies that by Eq. (23), 0%/
is negative for V<V, and positive for V>V,. The
term Py {(—cos0)/LoP;.(=cosB)/]s in Eq. (23) is
positive for 0<s<0.2. During the period that the
applied voltage V goes from the Taylor voltage Vr
to the critical voltage V¢, 8%/t is positive. Since
e(®)=0 at £=0 when the Taylor cone is formed, &)
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Table 1. Critical voltage for breakdown of the surface
of liquid Ga, Vc(r, h). Here, 7 is the distance
from the cone apex and % is the protrusion
length of the apex. In the calculations of V,
and V¢ given by Egs. (26) and (29), we choose
ro=2mm and a=2h (ie. €=0.38), where 7,
is the axial distance between the Taylor cone
apex and the counter-electrode and the para-
meter a is defined such that there is no shape
change for r>a. The values of V¢ at =0 rep-
resent the voltages for ion emission from the

apex
h(mm) r@m) Vi&V) Ve &kV)
Current work 0.0 all 0.0 overall equil
0.1 0.0 0.0 16.7
0.1 5.8 22.5
1.0 7.8 24.5
0.5 0.0 0.0 14.8
0.1 43 19.1
10 5.6 204
10 0.0 0.0 12.1
0.1 33 154
10 4.2 19.0
15 0.0 0.0 8.6
0.1 2.2 10.8
1.0 2.8 114
Taylor’s formula [9] all 17.1
Experiments [7,19-21] =0 5-10

is always positive. It follows that the angle deforma-
tion is positive near the onset of instability. The
£(#) obtained in this way is shown in Fig. 3. The
corresponding deformation of the surface is smoo-
thly concave in the region of 0<7<a. This implies
that the fluid surface is a cusp. It follows that the
fluid changes from the Taylor cone to a cusp as
the applied voltage V increases up to the breakdown
voltage V.

As seen in Table 1, V¢ is much lower than Vi,
at the apex. This reduction is due to protrusion
around the apex. These values of V¢ are found in-
reasonable agreement with experiments [7, 19-21].
As expected, V¢ increases with increasing 7. In the
work of Kingham et al. [11], they have introduced
an protrusion to explain experimental values of V.
However, they have not presented any physical

gxaFersi], 43U M 235, 1994

€(t)

(a)

ety

sl -— s e o= =

(b)

Fig. 3. Time-Dependence of deformation, &(t). Since
AP, is positive for V<V and negative for V>
Vi, 0%/ot* is negative for V<V, and positive
for V>V, Thus, for V<V, (a), &(t) &, as ¢
-> 0 : The fluid surface is stable. For V>V,
(b), &(t) = «© as t — o : The surface undergoes
instability at a certain time fc.

ground on such elongation. In the current work,
we have introduced a protrusion as a result of the
inward deformation of the surface in the apex re-
gion. The deformation is a solution of a set of elect-
rohydrodynamic equations satisfied by the electri-
fied fluid surface. Thus the obtained shape is regar-
ded as one of profiles of an electrified fluid obser-
ved during experiment. This implies that the cur-
rent work is a more exact treatment to explain the
mechanism of operation of liquid metal ion sources
than earlier works.

4. Conclusions
The realistic conical model of a conducting fluid

has been presented to describe the electrohydrody-
namic properties of liquid metal ion sources. In the
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current work, we introduced a protrusion h which
is half the parametric value a, where a is defined
such that there is no change in shape for r>a. We
take the angular deformation {=(/a) for »<a and
(a/r)e for r>a, where 0<s<0.2. This form of { satis-
fies the condition that »{ is finite as r approaches
to infinity. By considering deformation from the Ta-
ylor cone as the first-order correction to the sur-
face, we have obtained the »- and ~-dependent cri-
tical voltage, Vc(r, h), which is needed for the onset
of instability of the fluid, i.e. ion emission from the
liquid surface. Thus the obtained V¢ explains the
local instability, which can not be explained by any
static analysis. At the apex, V¢ is in good agreement
with experimental values. The form of { obtained
in the current work represents a cusp near the on-
set of ion emission.
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