Global Magnetohydrodynamic Simulation of a Comet : When a Comet Crosses a Heliopheric Sector Boundary

  • Yu, Yi (Laboratory for Atmospheric and Space Physics, University of Colorado)
  • Published : 1994.12.01

Abstract

A disconnection event (DE) of the cometary plasma tail is one of most spectacular phenomena observed in comets. Yet, for years it has remained one of the great unsolved problems I astronomy and space physics. The solar wind is thought to play a major role in the creation of comet plasma tail (type Ⅰ) disconnection events. The goal of this paper is to present a mechanism that explains the disconnection event in terms of the local conditions at the comet. Comparison of the solar wind conditions and 16 DEs in Halley's comet shows that DEs are associated primarily with crossings of the heliospheric sector boundary and apparently not with any other properties of the solar wind, such as a high speed stream[Yi et al., 1994]. A 3-dimensional resistive magnetohydrodynamic simulation in this paper supports this association by showing that only front-side magnetic reconnection between the reversed interplanetary magnetic fields that exist when a comet crosses the heliospheric sector boundary [Niedner and Brandt, 1978] could reproduce the morphology of a DE, including ray formation [Brandt, 1982].

Keywords