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ABSTRACT

A new predictor-corrector explicit time integration algorithm is presented for solving structural
dynamics problems. The basis of the algorithm is the implicit generalized-@ method recently developed
by the authors. Like its implicit parent, the explicit generalized-@ method is a one-parameter family of
algorithms in which the parameter defines the high-frequency numerical dissipation. The algorithm can
be utilized effectively for linear and nonlinear structural dynamics calculations in which numerical
dissipation is needed to reduce spurious oscillations inherent in non-dissipative time integration
methods used to solve wave propagation problems.
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have focused on developing implicit time integration

1. Introduction algorithms for structural dynamics that include con-

trollable numerical dissipation in the high frequency

Numerous efforts during the past several decades response domain. The purpose of the numerical
*Member, Space R & D Division, Korea Aerospace dissipation is to reduce the spurious, nonphysical
Research Institute oscillations that may occur due to excitation of
*xDepartment of Mechanical Engineering and Applied spatially unresolved modes. The basic difficulty
Mechanics, The University of Michigan, Ann Arbor designing such algorithms is to add high-frequency
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dissipation without introducing excessive algorith-
mic damping in the important low-frequency modes.
Numerous dissipative algorithms have been devel-
oped that attain high-frequency dissipation with lit-
tle low-frequency dissipation while maintaining
second-order accuracy : e. g., the Wilson-4 method,®
the HHT-¢ method of Hiber, Hughes and Taylor,®
the WBZ-¢ method of Wood, Bossak and Zienki-
ewicz,”® the p method of Bazzi and Anderheggen®
and the §-method of Hoff and Phal.®® The authors
showed that good accuracy can be achieved even if
the spurious root does not tend towards zero in the
low-frequency limit.”” This permits move flexibility
in the design of time integration algorithms. Based
on this theory, we developed a second-order accu-
rate, implicit time integration algorithm that is
optimal in the sense that for a given value of high-
frequency dissipation, low-frequency dissipation is
minimized.”” This new algorithm, which we call
the generalized-a method, is a one-parameter family
of algorithms ; the parameter directly specifies the
amount of highfrequency dissipation of the algori-
thm. The algorithm can be directly implemented
into standard programs with little additional effort
beyond that required to implement the HHT-« or
WBZ-¢ methods.

Numerical dissipation is also important (perhaps
more important) when solving structural dynamics
problems using explicit methods. The principal use
of explicit time intergration methods is for problems
in which the time step size needed for accuracy is of
the same order as the step size limit dictated by the
stability limit of an explicit method, e. g., wave
propagation and impact problems. The responses of
these problems usually are characterized by large
gradients or discontinuities in the solution due to the
propagating wave front. It is well known that dis-
sipative mechanisms are needed to reduce or elimi-
nate oscillations in solutions that exhibit discontinu-
ities unless front tracking methods or discontinuous
solution fields are employed. Amongst explicit time
integration methods for structural dynamics, the
nearly universal choice is the central difference (CD)
method which possesses no numerical dissipation. If
a mesh is constructed so that the critical time step
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limit for each element is the same, results from the
CD method are nearly optimal. This behavior is best
illustrated by the impact of a ond-dimensional, uni-
form elastic bar; the CD method computes the exact
solution when a uniform spatial mesh is employed.
However, in practical computations, it is not feasible
to construct a mesh so that the critical time step
limit is the same for all elements. The consequence
is that oscillations occur in the solutions computed
using the CD method. An explicit time integration
algorithm for structural dynamics that possesses
numerical dissipation was developed by Miranda,
Ferencz and Hughes® based upon the implicit HHT-
a method. The explicit and implicit ¢ methods were
then combined into a unified implicit-explicit scheme
that was shown to provide improved solutions
compared to the implicit-explicit method developed
by Hughes and Liu“*'" based upon the Newmark
method. The authors developed an implicit single-
step version of the Houbolt method and its
predictor-corrector algorithm which are merged into
an implicit-explicit method."® On the other hand,
Chung and Lee™ recently proposed an explicit
method which is second-order accurate and com-
pletely explicit even when the damping matrix is not
diagonal in linear structural dynamics or the inter-
nal force vector is a function of velocities in non-
linear structural dynamics.

In this paper we present a predictor-corrector
explicit time integration algorithm that has numeri-
cal dissipation as its implicit parent of the
generalized-¢ method. Similar to its parent, the
explicit generalized-¢ method was designed so that
for a given value of high-frequency dissipation, the
low-frequency dissipation is minimized.

2. Implicit Generalized-¢ Method

For completeness, we present the implicit
generalized-o method below. This algorithm is
second-order accurate and unconditionally stable
when solving linear structural dynamics problems.
The basic form of the generalized-¢ method is :
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in which n€{0, 1, ---, N—1}, N is the number of
time steps, 4t = t,.1— tx is the time step and d and v
are prescribed initial data. In terms of the desired
high-frequency dissipation p., the algorithmic
parameters are given by
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See Reference 8 for the derivation, accuracy and
stability of the implicit generalized-a method.

3. Predictor-Corrector Explicit Form of
the Implicit Generalized-o Method

Following the strategy taken to develop predictor-
corrector explicit (PCE) methods for the Newmark
and HHT-¢ methods, a PCE implementation of the
implicit generalized-¢ method has the form:

Predictors :

no longer the value of the spectral radius in the
high-frequency limit for the above explicit version.
This may be seen clearly in Fig. 1 which shows the
variation in spectral radius as a function of p.. With
0-=0, the algorithm has no numerical dissipation
while the implicit generalized-¢ method is
asymptotically annihilating when p.=0. When .=
1, the algorithm is unstable. An expression for the
stability limit for the algorithm is given by

_ /1200 — o) (14 px)?
L= 3+30-—30%+ 0% (18)

where the ¢ subscript is used to denote the critical
limit and @=wA¢ in which » denotes the maximum
system eigenvalue. As shown in Fig. 2, the stability
limit of the PCE implementation decreases as p.
increases. Thus, unlike the PCE forms developed for
the Newmark and HHT-¢ algorithms, the

1.1 T T T T i T T A | T i ¥
- /T
1.0 [ —Kz.i—\":r“é'jxﬂ:nzl.=::{:? ":
. S~ i
0.9 - N . T\ 1 4
3 \! ' \J
08 |- Poo = 1.0 \ .I -
Poo = 0.8 ——— \ !
07} Pz 0b—-—-- Y _
: Poo =04 ———— v
i Poo = 0.2 cemnaceee
06 poo=00———- E
0'5 i ;] " 1 1 i 1 n 1 i 1 a ]
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

wit
Fig. 1 Spectral radius of the predictor-corrector form
of the implicit generalized-g¢ method
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Fig. 2 Stability limit of the predictor-corrector from of
the implicit generalized-¢ method

where am, ar B and y are given by (11)~(12). In
contrast to the implicit generalized-a method, . is

o
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generalized-o method does not admit a PCE form in
which the same parametric relations as the implicit
parent can be used.

4. The Explicit Generalized-y Method

To obtain a useful explicit generalized-¢ (EG-a)
method, we relax the restrictions (11)~(12) and
derive new relationships for the algorithmic parame-
ters. To do so, we recall how the implicit
generalized-o# method was developed. The implicit
generalized-¢ method was constructed by requiring
the three roots of the algorithm’s characteristic
equation to be real and equal in the high-frequency
limit. To maximize high-frequency dissipation, the
two principal roots remain complex conjugate
except in the high-frequency limit. That is, the prin-
cipal roots bifurcate only in the high-frequency limit.
For an explicit method, the notion of high-frequency
limit is replaced by the critical limit, .. Since root
bifurcation results in a decrease in high-frequency
dissipation, there is two limits of concern for an
explicit method : . and the bifurcation limit, denot-

ed by Q,.

Let o, and p, denote the values of the principal
and spurious roots, respectively, of the algorithm’s
characteristic equation at the bifurcation limit, £,
(actually the absolute values of the roots since the
roots typically have negative values). In terms of p,
and p;, the algorithmic parameters, Q, and Q. are
given by

= 19
b= T o ey

T ar ‘O(pl);(‘(l):)” iﬂ’é‘fﬁi ooy 20
7:%-am+ oy (21)
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2(5—p3) + (5—130,— 05+ 03) 05— (1— 0p) 02
(23)

where the condition of y is obtained by enforcing
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second-order accuracy. The stability limit, (23), holds
provided p,#+1 or ps;#1; when p,=ps=1, then Q.=
2. Note that in addition to p, and ps, ¢, is also a free
paremeter. For computational convenience, we let

ar=1 (24)

The characteristics of the EG-¢ method can be
studied in terms of o, and ps. To maximize high-
frequency numerical dissipation, we requiere ps< p,.
One result of this constraint is that Q,<Q.. The
variation in @, as a function of p, and p, is depicted
in Fig. 3. It can be seen that for a given value of p,,
£, is maximum when ps;=p,. A second consequence
of enforcing ps< p, is that the value of the spectral
radius at the bifurcation limit is p,. This may be
seen in Fig. 4 which shows the variation in the
spectral radius curve as a function of g for p,=0.6.
Again note that the maximum value of £, occurs
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Fig. 3 Bifurcation limit variation of the explicit

generalized-¢ method
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Fig. 4 Spectral radius dependence on p, for the explicit
generalized-o method (0,=0.6)
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when p,= p,. Fig. 4 also shows that the EG-@ method
is similar to the implicit generalized-¢ method in
that for a given value of high-frequency dissipation,
low-frequency dissipation is minimized when ps= o,
Denoting the value of the spectral radius at £, by s,
we have that ps=p,= 0, achieves the optimal bal-
ance of low-frequency and high-frequency dissipa-
tion. What results is a one-parameter (p,) family of
the EG-g methods ; the algorithm is summarized in
Table 1.

The variation in spectral radius as a function of p,
is shown in Fig. 5. Note that when p,=0, the EG-a
method possesses an explicit time integration algor-
ithm’s version of asymptotic annihilation. That is,
provided that the critical time step is chosen based
upon £,, any high-frequency response of the struc-
ture will be nearly annihilated in one time step. The
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Fig. 5 Spectral radius dependence on p, for the explicit
generalized-¢ method

Table 1 Explicit generalized-q¢ algorithm
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numerical damping ratio of the EG-g¢ method is
shown in Fig. 6 for different values of p, ; £ denotes
the numerical damping as a fraction of critical
damping and T is the period of natural vibration.
The numerical damping increases from zero when p,
=1 to a maximum value when p,=0. The relative
period error is shown in Fig. 7 where T denotes the
numerical period. It is interesting to note that both
period elongation and shortening can occur in the
EG-¢ method depending on p,. Period error is
minimized in the low-frequency domain when p,=0.
367.

5. Numerical Example

To demonstrate the effectiveness of the numerical
dissipation inhernent in the EG-¢ method, we con-
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Fig. 6 Numerical damping ration of the explicit
generalized-@ method
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Fig. 7 Relative period error of the explicit generalized-
« method
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sider the impact of a one dimensional, homogeneous
elastic rod with linearly varying cross-sectional
area ; see Fig. 8. The bar is moving with an initial
speed, v, when the left end impacts the rigid wall.
The length of the bar (L) is 4; density, Young’s
modulus and v, have unit values ; the cross-sectional
area is given by

A(x) =A0+ALZ—A°~x (25)

where Ao=1 and A4,=0.01 are the cross-sectional
areas of the left and right ends, respectively and x is
measured from the left end. Employing linear rod
elements, the maximum element eigenvalue is given
by

e __ C(Ai+Ai+1)

o= 26)
¢ By AA (

where ¢ is the wave speed; ¢=/E/p. Using the
maximum eigenvalue of all elements as an upper
bound to the maximum eigenvalue of the bar discret-
ized by 400 elements, the critical time step, 4z, for

Ap

A1

1 2 3 4

T
Fig. 9 Stress distribution in the tapered rod at #y=3
computed using the central difference method
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Fig. 10 Stress distribution in the tapered rod at in=3
computed using the explicit generalized-q
method

the CD method is 4¢.=9.939x10-%. For the EG-g
method, we let 0,=0.6 ; then 47,=9.408 x 10-2. Figs. 9
and 10 show the stress distribution in the rod for In=
3, computed using the CD and EG-¢o methods, respec-
tively. It is clear from the figures that the spurious
oscillations inherent in the CD method are reduced
substantially by the EG-¢ method.

6. Conclusions

A predictor-corrector explicit version of the
generalized-o (EG-2) method has been presented for
structural dynamics. The disign and performance of
the algorithm were described ; it was shown that an
optimal combination of low-frequency and high-
frequency dissipation can be obtained within a one-
parameter family of algorithms. Unlike the
predictor-corrector explicit methods developed for
the Newmark and HHT-¢ methods, the algorithmic
parameter definitions differ between the implicit and
explicit generalized-¢ methods. The importance of
the numerical dissipation inherent in the EG-a
method was demonstrated by comparing its comput-
ed response with that of the central difference
method for a simple model problem.

The development in this paper was specifically
restricted to undamped systems. Adding physical
damping presents both challenges and opportunities
for the generalized-» methods ; this is the subject of
a subsequent publication.
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