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SLIDERS FOR THE NEXT GENERATION MAGNETIC HARD DISK DRIVE SYSTEMS-NUMERICAL SIMULATION
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Abstraci-Fundamental issucs and general procedures of modeling the head disk interface (HDI) in order to provide design criteria for future
ultra-low flying sliders are given. Intermittent contact and gaseous rarefaction effects are discussed using nonconventional kinetic theory. To
illustrate the simulation results, we modeled IBM 3370 taper flat sliders and positive/negative “bow ti¢” sliders. Several alternative HDI
concepts for future disk drives - viscoclastic bearings, a hybrid system, and contact recording - are also briefly discussed.

I .INTRODUCTION

The main goal in the disk drive industry is to develop
a reliable, low cost, and high density storage device. The
efforts to achieve this goal will continue into the next decade
as shown in Figure 1, and the Data Storage Systems Center at
Carncgie Mellon University is pursuing the development of a
10 Gigabits per square inch hard disk drive system. Note that
10 Gigabits represents the memory required to store five
million double-spaced typed pages, which is approximately
comparable to a stack of papers having a height of a 150 story
building. These ultra-high densities will necessitate lower
flying heights, improved tribochemical characteristics (carbon
overcoats, lubricants, etc.), in addition to improved recording
hcads (c.g., magnetoresistive head), media (e.g., barium
ferrite without carbon overcoat [1]), signal processing, and
track following.

10 10’

0N

@

5 Linear density =

g \ I B+

3 IR BTG

o - £
.- s

% - Magnetic spacing E

< P ~

A I ~ / 11080 =

wn - ~ 2]

x zZ

173 [o%)

o / > < o

o Physical spacing ~ ] 10# g

(@) 9 =Z

< =

S 3

T o T T T 10°

1990 1994 1998 2002 2006

YEAR OF SHIPMENT TO FIRST CUSTOMER
Figure | Storage density growth during the past and next decades [2]

In this paper, we exclusively focus our attention on the
technology associated with flying height reduction. We will
discuss the necessary technology in order to achieve Y - 2
Hinches (50nm) {lying height, even though the ultimate goal
is contact recording (almost zero spacing between the head

and media which is analogous to tape or floppy drives). As
the flying height is drastically reduced to achieve ultra-high
density, severe interaction between the head and disk resuits.
This interaction can lead to significant wear of the disk
surface which may cause catastrophic loss of data. This may
also be important in removable hard disk drive systems where
transient particles momentarily disturh the air bearing which
increases the head-disk spacing.

This paper describes several essential features of
mathematical modeling needed to advance ultra-low flying
and pseudo-contact recording technologies. We will focus on
the miniaturization and transient dynamics of an IBM 3370
taper flat slider and symmetrical and asymmetrical “bow tic”
shaped rail sliders, with cuts on the inside and outside edges
of the shider rails. Miniaturization decreases material costs as
well as the overall cost of the device. Smaller masses and
faster rotational speeds also result in lower power
consumption and latency of recording, respectively. Smaller
disks and recording heads facilitate higher storage through
both smaller head-disk separation (i.e. lower flying height),
which increases the areal density of stored information, and
through tighter stacking of disks within the head-disk
assembly, which increases the volumetric density of the
device.

We will study gaseous rarefaction effects using kinetic
theory and we will also investigate surface roughness effects.
Viscoelastic bearings, hybrid models combining air and liquid
bearings, and contact recording technology will be briefly
discussed.

[I.GENERAL PHILOSOPHY OF HEAD DISK INTERFACE (HDI) MODELING

The general methodology used in HDI simulations is
as follows: (i) for a given slider geometry and disk
topography, calculate the pressure distribution beneath the
slider rails using an appropriate governing equation, and (ii)
from the pressure distribution, determine the orientation and
location of the slider as a function of time. For pseudo-
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contact recording, intermittent contact between the slider and
disk occurs and additional information regarding the
frequency and magnitude of these collisions should be
incorporated into simulations. Everybody has their own
favorite method of developing simulation code, however,
none of the HDI simulations reported in the literature can be
reliably applied to the design of ultra-low flying sliders
including intermittent contact.

Numerical simulation of the HDI involves two sets of
governing equations, one which determines the motion of the
slider suspension and another which determines the pressure
distribution between the slider rails and the disk. The slider
suspension is usually modeled using linear springs and
dashpots, yielding the rigid body equations of motion that
govern the location and orientation of the slider;
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In Egs. (1) - (3), 2z, 0, and ¢ are the vertical
displacement, pitch angle, and roll angle of the slider relative
{0 its initial static attitude (Z., 6., and 0c); Xeg> Yo and z., are
the location of the center of gravity; Xpp, Ypp and z,, are the
location of the load point of the slider; m is the mass of the
slider; I, and Io are the moments of inertia; k,, k,, and k, are

suspension stiffness coefficients; ¢,, c,, and c, are suspension
damping coefficients; F is the normal load; and p and p, are
the bearing and ambient pressures respectively. A schematic
illustration of these variables is given in Figure 2. The
additional terms appearing in Egs. (1) - (3) account for air
bearing shear stresses along the bottom of the slider rails (the
integral term) and slider disk collisions. Some simulation
codes do not include these terms, and provide incorrect
values for the pitch and roll angles. Wall shear stress
contributions depend on the viscosity (1) and mean free path
(M) of the gas, the relative disk velocity in both the x and y
directions (U, and U,), the flying height (h), as well as the
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surface accommodation factor (o). Slider-disk collisions,
which are assumed to be impulsive (simplest model) and are
represented by the Dirac delta function 3, occur at time t” and
at the location x~ and y’. The relative contribution of slider-
disk collisions to the dynamic motion of the slider assembly
will depend on their magnitude (q) as well as the kinetic
coefficient of friction () between the surface of the slider and
disk. Standard numerical integration procedures (e.g., Runge-
Kutta, predictor-corrector, etc.) are used to solve the ordinary
differential equations given in Egs. (1) - (3).

X

Figure 2. Schematic of a typical head-disk interface.

The equation governing the pressure distribution,
p(x.y), between the slider and disk surface is conveniently
written in the following generalized Reynolds equation form,
and is solved using the finite element method (FEM)
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In Eq. (4), Q; accounts for modifications due to gaseous
rarefaction effects and is usually referred to as the total mass
flow rate coefficient. Q, will be extensively discussed below.

M.GASEOUS RAREFACTION EFFECTS AND DEVELOPMENT OF NEW
KINETIC THEORY

In the past, the gas between the surfaces of the slider
and disk was considered as a continuum. Gaseous rarefaction
effects were first incorporated into HDI models by
Burgdorfer [3] who introduced first-order slip flow boundary
conditions. In his analysis, Burgdorfer expressed slip flow as
a truncated Taylor expansion in both the mean free path of
the gas and the tangential stress at the wall. Hsia and Domoto
[4] extended the analysis to include second-order slip flow
effects. Direct expansion of Burgdorfer’s method to higher
order rarefaction effects is conceptually difficult in continuum
mechanics, since the velocity profile v(x,y,z) between the
surface of the slider and disk is quadratic (i.e., 9"v/ox" = 0O for
n>2).
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Numerous authors [5] - [8] have included higher
ordered rarefaction effects by deriving equations based upon
the lincarized Boltzmann equation (LBE). The only
approximation of the LBE adopted for HDI simulations
incorporated the Bhatnagar-Gross-Krook's (BGK)
approximation [9]. A major numerical drawback of
formulations which are based upon the Boltzmann equation,
is that the complex integrals accounting for molecular
collisions must be evaluated during each numerical iteration.
Fukui and Kaneko [8] attempted to alleviate this problem by
predetermining the values of these integrals for a wide range
Knudsen numbers (Kn = A/h). Integration within each
iteration was thereby replaced by a database search
procedure. Several attempts to fit Fukui and Kaneko’s
database of Q, values have been reported [10, 11]. The most
accurate single equation analytic fit of Boltzmann results was

obtained wusing a Padé form (or continued fraction
formulation),
(aC.Kn:(, - l)(oc’h/_ﬁ?)«r(acv,(":m ~1)ve’Kn
Q, =1+6Kn : )
o +4/p’ +e'Kn

where a, = (Q, - 1)/6Kn. Equation (5) replicated databasc
values of Q, over the entire range of Knudsen numbers given,
using only thrce independent parameters which were
determined using a Monte-Carlo best fit procedure. This
cquation also gives the correct asymptotic limiting behavior
for Kn > 0 and Kn — o, i.e.,
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Figure 3 Database values (denoted as circles) of the total mass flow rate
coefficient, Q, and the numerical fit (line) obtained from Eqs. (5) and (6). o
=3.849, §" = 0.33536, ¢’ = 0.63269.
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Under ultra-low flying conditions, molecule-surface
collisions occur more often than molecule-molecule
collisions. The Boltzmann equation discussed above, which
assumes chaotic molecular collisions, is invalid under ultra-
low flying conditions. A rigorous kinetic equation is currently
being developed, which is structurally similar to the Fokker-
Planck equation [12, 13]. In this paper, however, we will only
compare the mathematical structures of the Boltzmann
equation (with the BGK approximation), an alternative
kinetic equation (the Fokker-Planck equation), and the
collisionless kinetic equation.

The first time derivative of a one particle distribution
function, f(r,.(;t), is described by the following kinetic
equation (using dimensionless velocity, £ = v/v,, where v is
the molecular velocity and v, = (k,T/m)"? is the thermal
velocity of the gas [12, 13])

or

2] d .
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A(f) contains the collisional information of the gas molecules
and depends on the kinetic model chosen. The LBE/BGK
model (B) yields

Ay (f)=-f(r.g,1)
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where ¢({) = (21t)'mexp(—§2/2) is the dimensionless Maxwell-
Boltzmann distribution function. The collisionless kinetic
equation (C) yields
Acf)=0. (10)
All of the collision terms A(f) satisfy the conservation laws of
number, momenta, and energy, respectively,

1
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To compare the three different collision terms (B, FP, and C),
we expand A(f) in terms of the generalized Hermite
in)

polynomial tensors H,',, , (¢) [12,13],

A =]d*E (. f(r. ¢, (12)
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we can obtain the cigenvalues A,. A, for the three models and
the range of application of the equations are qualitatively
summarized in Figure 4. Note that all of the models satisfy
conservation laws, implying five zero eigenvalues (sce Eq.

(1.

The best kinetic theory descriptive for ultra-low flying
is (he Fokker-Planck like cquation, however, we may choose
an average between the LBE/BGK and collisionless kinetic
models as a good approximation. The calculation of Q, based
on rigorous kinetic theory is currently under investigation.
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Figure 4 Eigenvalues for the three different kinetic models and illustration
of the applicable spacing ranges.

V.ULTRA-LOW FLYING SLIDERS AND MINIATURIZATION CRITERIA

In order to calculate the ultra-low flying characteristics
of sliders, several numerical methods are utilized to solve
Egs. (1) - (5) simultancously. A finite clement method
algorithm, based on an clement by clement approach [14, 15],
solves the time dependent generalized Reynolds equation
iteratively with the force and moment balances. The non-
lincarity of Eq. (4) is handled by using a modified Newton-
Rhapson scheme, and the resulting equations are solved using
a bi-conjugate gradient method {16}, Egs. (1) - (3) are solved
using a [ourth order Runge-Kutta method. All ol the
rarcfaction models described and arbitrary roughness or
surface configuration arc also incorporated (o the current
numerical algorithm.
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Sharp pressure gradients duc to surface roughness or
height discontinuilies can cause numerical instabilities in
many algorithms. A flux corrected transport scheme is used to
alleviate this problem. This scheme decreases numerical
instabilities while maintaining accuracy. Further, we added a
fast Fourier transform algorithm to aid in interpreting HDI
experiments. The dynamic simulation algorithm is capable of
solving transient responses of sliders but usually needs a great
amount of computing time to obtain steady state results.
Another algorithm has been developed to obtain the steady
state flying orientation within a few minutes. This code is
based on the conventional finite element method which
assembles the global stiffness matrix and uses a direct matrix
solver. State-of-the-art graph theory is incorporated to
minimize the bandwidth of the global stiffness matrix and
higher order clements are used to handle discontinuities
which make solutions unstable around sharp edges.

Numerical simulations were performed for steady state
and dynamic transient analysis. Steady state simulations
incorporated various slider geomctries and miniaturization
cffects. The miniaturization results are used to obtain a
scaling theory [17]. This theory is based on an order of
magnitude approximation to the load bearing capacity
definition and the equation of motion. A form of the equation
1s,

) a.R UR/
B A h R —L =0, (14)
VFPon F

where h is the trailing cdge flying height, F is the normal load
applicd to the slider, U is the linear disk velocity, and Ry is a
percent reduction factor of a given shider size (e, Rg =05
corresponds to a 50% nano slider). The effective surfacc
accommodation factor a. accounts for gascous rarcfaction
cffects and depends on the generalized Reynolds equation
chosen. The two constants A" and B’ are determined using
two results from numerical simulations, and Eq. (14) gives
excellent agreement with simulation results for 1BM 3370
taper flat sliders over a wide range of operating conditions.
This scaling theory is very uscful in estimating the steady
state film thickness for numerical simulations, which aids in
reducing computational efforts. Figure 5 shows steady state
simulation results of the trailing ecdge flying height and pitch
angle for several miniaturized sizes (full, micro, nano, and
pico) of an IBM 3370 taper flat slider with a normal load of 5
grams and a linear disk velocity of 21.5 m/sec.

To validate the scaling theory, the air bearing surface
geometry was alicred and a “bow tie” shaped air bearing
surface shown in Figure 6 was developed. The area of the air
bearing surface and the length and width of the slider are
consistent with an 1IBM 3370 slider for comparison purposes.
This “bow tie” slider shape is chosen to reflect the current
industrial trend of adopting negative pressure sliders with
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complex air bearing surfaces (e.g., Seagate negative pressure
sliders or Guppy slider). These designs employ hour glass
shaped side rails to achieve stable ultra-low flying heights.
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Figure 5 FEM results of an IBM 3370 taper flat slider:
() Flying height versus percent reduction factor (R;)
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Figure 6 Geometry of “bow tie” sliders: (a) positive and (b) negative
(x indicates the percentage of the slider length as measured from
the leading edge)

The location of the hour glass neck (x) is considered
as a design variable. The numerical results for the trailing
edge flying height and pitch angle are shown in Figure 7 as a
function of x. A 100% “bow tie” slider is used in simulations
with a 1 gram normal load and 10 m/sec disk velocity. Figure
8 shows the influence of the hour glass neck on the pressure
distribution between the leading edge and trailing edge
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region. The pitch angle depends on this pressure balance, and
the variations of the flying height at the trailing edge are
altered by this angle.
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Figure 8 Steady state dimensionless pressure profile for a 100% “bow tie”
slider with x = 50% of slider length

Miniaturization effects of “bow tie” sliders with x =
50% of the slider length (we refer to this as a symmetric “bow
tie”) are shown in Figure 9.
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Figure 12 Transient response of a negative “bow tie” slider (x = 25 %)
passing over an ellipsoidal asperity.
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V.DISCUSSION AND CONCLUSIONS

In this paper, several fundamental features of
modeling the HDI in order to formulate design criteria for
future ultra-low flying recording heads were examined. The
modeling of state-of-the-art air bearing simulations was
described, which includes the Boltzmann equation descriptive
for gaseous rarefaction of current slider designs and the finite
element method. For future sliders flying under 1 pinch (25
nm), two issues should be considered. One is the problem of
intermittent contacts. The simplest model is the incorporation
of the delta function terms in Egs. (1) - (3). The other issue is
the adoption of an accurate gaseous rarefaction model. More
sophisticated theory is needed to replace the Boltzmann type.
A couple of kinctic equations (Fokker-Planck and
collisionless  equations) were discussed as possible
replacements of the Boltzmann/BGK model. Caiculation of
Q; from the new kinetic equation may require complicated
algebraic details. One quick remedy is to modity Eqs. (5)-(6)
for any kinetic equation developed. The limiting values, A=
and a.y, .. in Eq. (5), can be replaced by analytic solutions
obtained from any arbitrary kinetic theory one chooses.

To illustrate simulation results, we miniaturized IBM
3370 taper flat sliders. A scaling law was tested based on
these results which has two parameters. These parameters are
primarily dependent on the shape of the slider. To test the
scaling theory further we developed “bow tie” positive and
negative pressure sliders inspired by the Seagate negative
pressure slider design. Scaling results for the “bow tie” sliders
are given, as well as the transient slider dynamic behavior
over well-defined asperities. The transient dynamic study
over asperities and pits is very important in studying
contaminated environments, especially for removable disk
drive systems.

The recommendations given in this paper can be
essential in developing slider design criteria for pseudo-
cdntact recording air bearing technology. The methodology
we provide here could also be important in studying the lift
forces for contact recording sliders [18]. It is worthwhile to
mention the interesting concept of viscoelastic liquid bearings
(VLB), known commercially as VISqUS technology. In VLB,
a viscoelastic liquid is used as the supporting layer instead of
air [19]. Therefore, the mechanical performance of the disk
drive will be primarily dependent on the rheological
propertics of the chosen fluid. In general, when a fluid is
confined in a small geometry, the apparent viscosity not only
depends on the shear rate, but also on the characteristic
length of the confined geometry [19, 20). The analysis
reported in this paper can easily be extended to VLB
technology as long as we have physically realistic rheological
equations of state for the fluid in the confined geometry.

Finally, new HDI designs combining air and liquid
bearings - we call them “hybrid” systems - are very
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challenging to model. This system can be made by using a
reasonably thicker lubricant layer without carbon overcoat
(for example, lubricant layer over barium ferrite media [1]).
Design criteria for sliders used in this “hybrid” interface are
challenging to calculate even though the analysis we reported
here can be generalized to this system. Our analysis should
incorporate a complex two-phase fluid model in order to
simulate an accurate pressure profile.
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