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Design of A New Sliding
Mode Controller for Uncertain Multivariable
Systems Using Continuous—time Switching Dynamics
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I . Introduction
In this paper, we develop a simple design methodology

for state-feedback controller for uncertain systems using
sliding mode control theory. Sliding mode control{SMC)
based in variable structure system (VSS) is a kind of
adaptive scheme, especially characterized as a passive
adaptive control which does not employ any identification
mechanism{1]. The salient feature of SMC is that the
so-called sliding mode occurs on a sliding surface. While
in the sliding mode, the system has invariance properties,
yielding motion which is independent of certain para-
meters and disturbances.

However, undesirable high-frequency chattering occurs
essentially due to the switching logic of SMC scheme.
Some authors proposed the boundary layer in the vicinity
of sliding surface to reduce the chattering[2]-[7]. But,
these methods have difficulties in the parameter selection
for the boundary layer.

Therefore, we develop the switching dynamics in the
range-space of switching surface matrix C to eliminate
the chattering completely. The dynamic behaviour of the
uncertain systems with this switching dynamics will be
described by the vector differential equations. It will be
shown that the eigenvalues of closed-loop system are
composed of those of the fast and the slow subsystems,
i. e, the systerns which govern the dynamics off the
sliding surface and in the sliding surface. It will be also
shown that every response of the uncertain system with
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the proposed switching dynamics in the presence of
matched uncertainties is uniformly ultimately bounded
within arbitrarily small neighborhoods of the switching
surfaces. Finally, the modified robust controller with two
switching dynamics is also proposed in order to reduce
the steady-state error in view of control input con-
straints.

In section II, fundamental theory of SMC, .sliding
mode controller design using continuous-time switching
dynamics and its stability analysis are discussed. In the
last section, the results of this paper are summarized.

II. Sliding Mode Controller with Switching
Dynamics
1. Fundamental Theory of Sliding Mode Control
Let us consider the following uncertain multivariable

system:
x = (A+JA(q()))x

+ (B +4B(a(t))u +Fv
X(t{)) = Xp

ey

where x € R" is the state, u e R™ is the control, v e R?
is the disturbance and q(t) € Q represents the parameter
uncertainty of the system. It is assumed that the pair
(A, B) is completely controllable, 4A(-) and 4B(-)
are continuous, Q is a compact subset in R® and q( - )
is Lebesgue measurable

x = Ax + Bu 2)

The nominal system - the system without uncertainties
- 18 described as follows.

X(tﬁ) = Xy

If some conditions are satisfied (primary among which
are the so-called matching conditions [8]), then all



uncertain elements can be lumped and the system is
described by

x =Ax +Bu+Be x(t5) =xg (3)
where e is the lumped element such that the absolute
value of the i-th component e; is bounded by a
nonnegative constant f;, le;| =<f;.

In conventional sliding mode control theory, the j-th

switching surface s; passing through the state-space

origin is defined by
si(x) = | xe R": ¢/(x) =0} (4)
i=12,....m
where ¢’ is a row n-vector. The sliding mode occurs
when the state lies simultaneously in each of the sur-
faces s;. Assembling the rows ¢’ into an mxn matrix C,
the sliding mode is attained when state reaches and
remains in the intersection S of the m switching
surfaces:

S= (5= (x:Cx=0] ®)

In geometric terms the subspace is the null space of C,
N(C).

A sufficient condition for the existence of the sliding
mode on the intersection S is that the following
inequality is satisfied [9].

STS <0 (6)
Consider the equivalent system of (2).
x=[ I, —B(CB)"!C] Ax = Aex (7)

It is easy to see that B(CB) C is a projection operator
and has rank m. Hence I,—B(CB) !C is a projection
operator with rank n-m. Therefore, the matrix A, in

the equivalent system can have at most n—-m nonzero
eigenvalues. Our goal is to choose C so that the nonzero

eigenvalues of A, are prescribed negative real numbers
and the corresponding eigenvectors [ w;, @, ..., @p-m ]
are to be chosen to lie on the switching surface.

Let W=1[ w,ws,...,00-1 ]

In the sliding mode, the system is described by

, where WeR™®™™,

=A
SG0=Cx =0 ®
The order of system is n-m and the solution must be in
the null space of C, that is, CW=0. It is well known that
complete controllability of the pair (A, B) is equivalent to
the existence of a controller of the form u=-Kx so that
the eigenvalues of A~-BK can be arbitrarily assigned [10].
Our equivalent system has the following form:
x = Ax —B(CB) 'CAx )
If we let K = (CB) 'CA, we need A-BK to have n-m
prescribed negative eigenvalues { A,,4;,...,4,., } and n-
m corresponding eigenvectors [ w;, wg, ..., 0y 1 . This
is equivalent to
(A—-BK)W = WJ (10)
where ] is (n-m)X{n-m) Jordan matrix. Here C is
determined directly from the nx(n-m) eigenvector matrix
W. Since
col{(W) € N(C) 11
it follows that
C=AW" (12)

continuous

RIOH - KiSst - N2BISSt =2Al K23 M1 19% 3

where A is an arbitrary nonsingular mXm matrix and
W* is an annihilator of W (W*¥ =0). f CB is
required to assume a certain value H, A must be
determined from

CB=H=AW'B (13a)
A=HW*'B)™' (13b)
The inverse of W*B always exists since R(W)

M RB)= (0}. From (12) and (13b) we can design

the switching surface matrix C as follows.
C=H(W'B)"'W"* (14

In general the sliding mode controller varies its structure

depending on the position relative to the switching
surface and has the form:
Ui = Uieg + Ui (15)
ul i &(x)>0

ui,,={ o
Ui
is the

control part - which is continuous - and

if s;(x) <0
where uje i-th component of the equivalent
u, 1s the
discontinuous or switched control part. Note that there
are several possible discontinuous control structures for
u i [11].
2. Sliding Mode Controller Design using the Continuous-
time Switching Dynamics
From (15) the control inputs are essentially discon-

tinuous due to switching logic and as a result the
trajectories chatter along the sliding surfaces resulting in
the generation of an undesirable high-frequency un-
modeled dynamics of the control system. Therefore, in
this section we introduce the following switching dy-
namics to remove the chattering completely in actual
implementation of sliding mode controller.
Let us consider the following switching dynamics.
S= —I% (16)
where I' = diag(n, 72, ..., 7m) . 700.
The condition for the existence of a sliding mode is
easily checked as follows.
STS= —S"Irs<o  ifS=0 (17
We can construct the controller using the above swi-
tching dynamics. Differentiating (5) and using (16) yields

§=Cx =C(Ax+Bu) = -TS (18)
Solving for u
u = —(CB)"}[ CAx +TIS]
= —(CB) 'CAx—(CB) 'IS (19)
= ueq +l-l’sd

where u,, is equivalent control and uy is continuous
control with above switching dynamics.

Here let us examine close-loop eigenvalues. Sub-
stituting (19) into the nominal system (2) without
uncertainties, we obtain the following closed-loop system

x=[ A,—B(CB)'UT] x=Ax (20)
where A, = [ I-B(CB)7'C] A.

Theorem 1 @ Let us consider the system (2) with a
state feedback control (19). Then the
eigenvalues of the closed-loop system (20) can be
determined as follows :
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oA)={ A: det{A,—, — D 21)
det{(Al, + 1) =0}
where ] is (»-m)xX(n-m) Jordan matrix with n-m
prescribed negative eigenvalues.

Proof : We introduce a similarity transformation M
which decouples the system (20) into the fast and the
slow subsystems, that is, the systems which govern the
dynamics of the system off the switching surface and on
the switching surface.

Let M R™" be defined by
WZ

C
where We RV ™ jis the eigenvector matrix and W#
is a generalized inverse of W. Note that M is invertible
with M7*P=[ W ! B].
We introduce new coordinates

x NEW = Mx (23)
Then, in new coordinates the closed-loop system be-
comes

(22)

™% — M[ A,—B(CB)'rc] M 'x ¥
Dll DlZ
= O S x EW
Dy i Dy
Dy=WT[ A,~B(CB)'TCl W (o
Dp=WI[ A,—B(CB)'IC] B
Dy=C A,—B(CBT'IrCl w
Dyp=Cl A.,—B(CB)'I'C] B
From MM ™! = I, we obtain the following relations :
WEW =1, .
W*B =0
CW =0 (25)
CB =1,

From the definition of a generalized inverse and the
above relations (25) we can obtain the following sim-
plified state-spae model in new coordinates.
o4 : g
grew _ | WOAW S WAB

(26)

0 i -r

Therefore, the closed-loop eigenvalues can be determined

by the following characteristic equation :
det(Al,_,—WEAW)det(Al,+1) = { 27

Since from (10) W2®AW = J, we obtain the following

result.

det(Al,—p—J)det(Al, +) =0 (28)
where ] is (n-m)X{n-m) Jordan matrix with n-m
prescribed negative eigenvalues. |

Consequently, the closed-loop eigenvalues are deter-
mined by both the Jordan matrix ] and the positive
definite diagonal matrix I'. Note that ] and I determine
the null-space dynamics and the range-space dynamics,
respectively. The range-space dynamics are exponential
and controlled by a choice of I'. Therefore, the stability
of closed-loop system can always be guaranteed.

Theoretically, the switching dynamics only guarantees
asymptotic hitting to the sliding surface. But, practically
it is not unreasonable to be assumed that the states are
in the sliding mode already after five times longer than
time constant of the switching dynamics. In the re-
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maining of this section we will examine the dynamic
behaviors of the uncertain system with switching dy-
namics.

Let us consider the following range-space dynamics in
the presence of matched uncertainties.

S =Cx

C[ Ax+ Bu + Be]
Cl Ax+Bug + Bugy + Bel (29)
CB[ usd+e]
—IS +CBe
Provided the matrix CB is selected a diagonal matrix
H = diag( 7, 75,...,7n), the solution of range-space

o

i

dynamics can be described as follows
[lexol ~Mt—2) ] He(ddr

3. Stability Analysis of SMC System with Switching

Dynamics.

In this section it will be provided that every response
of the matched uncertain system is uniformly bounded
and uniformly ultimately bounded within arbitrary small
neighborhoods of the switching surfaces.[7]

Tet us consider the most simple generalized Lyapunov
function candidate for the i-th switching function.

v=32Vis) (31a)
Vi(s) = 4%s? (31b)
Differentiating (31b) and using (29) yields
Vi(si): Si é,»
= Si(’/iex‘si?’i)
< Jsl U Imlfi—Isilwl (32)
= {1 p [ 28(|s1)] "
—27.8(1s 1)
< 20 =7 | )]

where 8(ls;|) = % |s;1®and & = Y%flnl [28()s;]

)1 %
Therefore the negative definiteness of V can be gua-
ranteed only in the following regions:

KRS
7i
From (33) we can conclude that there exists a compact
set 4,= {s;: Is;| < inlfi/ v} from which no solu-

tions can escape.

I'sil > i=1,2,..,m (33)

Theorem?2 : (uniform boundedness) If s;(-);[ to,
HY =R, s{t) = sy is the i-th solution of (29), then
I'si(t) | = = | s(t) | £dilry)
vtel tg, t] (34)
where
(o it r>g
aw={ 7 g e
and
E=lnlfi /[ n (36)

[sgl <r and 1) &

We define a Lyapunov function candidate for the i-th

Proof : Suppose

switching function as follows

Vi(s;) = Vzlsi|2:5(lsi|) (37)

i=1,2,....m



If sgeR¥N4, the following inequalities are satisfied
since V is negative definite.

8(r) 28| sp |)=Y%sh (38)

= %si(t) = o I s(t) )

Therefore, since &( - ) is a monotonous increasing func-
tion we can obtain the following results

[si(t) | <r; Vte[ ty,t] (39)
I'sipl <1 but r <§.

s;(t) can not escape from

Suppose now that

If sy 4, the solution
the compact set J4,. Thus, the following inequalities are
satisfied

(&) =Yss(t) = 6(Isi(t) ) (40)

Therefore,
[sit) | <&  vtel tg,t)] (41)
]

Theorem 3 (uniform ultimate boundedness) If

si(+)s[ ty,t,] — R, si(ty) =s, is the i-th so-
lution of (29) with |sy| <r , then for sufficiently small
&( <1) and given d, = &
Isi®) | < d; vtel to+T,( di,r),t,] (42)
where
0 -
Jifr, < d;
T d;, 1) = 8 ;) —o(ry) (43)
2 { & ai)_Yia( E.) }
,ifr > d;
Proof : Consider r,< d;. If syl <r, then |syl
< d,; ; hence, in view of the result of Theorem 2,
Isi(t) | < d, vtel tg,t] (44)

so that Tl( d_i,ri):O.

Next consider r;> d; and suppose that

Isi(t) ] = d;, vtel ty,t;] (45)
where
t] =ty + T Ei,ri) , (46)
Ti( d_i,l’i) _ & di)_a(ri)

2{&( al) — 7:6( al) }
Then, in view of (32),
Vis: (D) = a(Is(t] 1)
< Vilso) + [ Vilsi()dr
< alsg D42 [ 1 alls(D D)
—7d(s ()] dr

< &ry) +2T( d;, 1) (47)
*[ & d_i)_7i5( C_ll_)]
= &)+ & d;) —8(ry) ]

_ { &l @) = 7:6( d_l) '
*[ el di) = 70( d)]

= & di)

That is,

we conclude that there must be a

'si(t)) | < d;. From this inequality and (45)
t] such that |s;

(t1)l = d,. therefore, in view of the result of theorem 2

|Si(t1)| = d_i Vte(t;,tl] (48)
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From above theorems the sliding mode control system
with switching dynamics can be guaranteed only the
uniform  boundedness and the uniformly ultimate
boundedness.
4. The Modified Sliding Mode Controller with two Swit-
ching Dynamics

From the definition of the compact set 4, it is clear

that 7 must be increased in order to reduce the stea-
dy-state error. But, in some control problem the control
inputs are constrained by physical situation. Therefore
we cannot select sufficiently large ;.

To overcome this difficulty we introduce the following

modified sliding mode controller with two switching

dynamics
u; = Uieq+ Eisd i=1,2,...,m
U = A(l/ﬂli)'/v}(si) |
— if | s;(t 7
sd = s ’ s ' (49)
Hisd uie= —(U/n)rs
Jf 1si(t) | = g
Cri»r)

Note that the design parameter g;( >0 ) must be sel-
ected such that

[ 7| f
7

#; < i=1,2,...,m. (50)

. Conclusion
In this paper, we introduced the continuocus-time

switching dynamics in the range space of switching
surface matrix C to remove the chattering in actual
implementation of sliding mode controller. Every response
of the closed-loop control system with the proposed
switching dynamics in the presence of matched un-
certainties is uniformly ultimately bounded within arbi-
trarily small neighborhoods of the switching surface.

The proposed sliding mode controller does not require
the complex computations for switching gains of the
controller and requires only the selection of I’ in the
range-space in order to occur sliding mode. Hence, the
simple design procedures will encourage control engineers
to implement the proposed
Despite control input constraints the steady-state errors
can be reduced effectively.

sliding mode controller.
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