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Design of Nonlinear Robust
Observer for Robots with Joint Elasticity
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I . Introduction

We consider the observer design problem for flexible
joint manipulators which have nonlinearity and contain
uncertainty. As shown by the experimental work of [1],
the joint flexibility must be taken into account in
analysis. Gear elasticity, chain, and shaft wind up are
common sources of joint flexibility. From modeling point
of view internal deflection between the actuator and the
driven link can be approximated by inputting a torsional
spring at each joint. One of the models of flexible joint
manipulator was presented in Spong [2] and we adopt
this model in this paper. The observer design problem is
one of the open problems in robot control area, specially
in flexible joint robot control area. As matter of fact, the
robot control with state feedback requires the knowledge
of state variables for each link and joint, which may be
either positions and velocities of joints and of the links
[3] or positions, velocities, accelerations and jerks of links
[4). At this point, it is necessary to consider how these
state variables are easily obtainable. However, the added
cost of instrumenting both the links and actuators
sensors may be high. Therefore, the control design which
requires either the link variables or the actuator variables
is more desirable. These have motivated the design of
Observers to reduce the number of sensors needed in
implementation. Several algorithms for observer have
been proposed in many researchers [5-9]. These
algorithms are solved in an approximate way and based
on the system with known and constant parameters.
Robustness properties of the above observers are not
quite analyzed. In this paper, an observer is proposed for
flexible joint manipulators, which handles uncertain and
constant (time-varying) parameters. The designed obser-
ver adopts robust control algorithm based on Lyapunov
approach [10-11]. This paper is organized as follows. In
section II we introduce uncertain system and practical
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stability. In section LI the flexible joint manipulators
model is presented. In section IV, the procedure of
observer design is shown. For the system with
time-varying uncertainty another observer design is
presented in section V. Finally, the sirmulation results are
llustrated in section VI and this report concludes in
section VIL

II. Uncertain system and practical stability
We consider the following class of uncertain dynamical
systems

E(D=R&D),a(D, D )

where teR is the time, &(f)eR” is the state, o(HeR’
is the uwncertainty, and A&,0(H,H is the system
vector. From now on, unless otherwise stated, the norms
in this paper are Euclidean.

Definition [11,12]. The uncertain dynamical system (1) is
practically stable iff there exists constant d:.0 such
that for any initial time ¢y,=R and any initial state,
£,eR ", the following properties hold.

(i) Existence and continuation of solutions: Given
(&0, t)ER"XR, system (1) possesses a solution &( - ):
[£9,t)—>R", &(tg) =&, t1D 1.

& - [ty t)>R” can be

Furthermore, every so-
lution
[#,,00).
(i1) Uniform boundedness: Given any constant #» .0 and
any solution &( - ):[¢,,)—R", &ty)=¢&, of (1) with
&gl 7, there exists dg(rg)>0 such that |&Dl=<d,
(7¢) for all tetg,00).

continued over

(iii) Uniform ultimate boundedness: Given any constant
d there exists a finite time
Te de,7e) such that ||&l<7r. implies [I&DI< d, for

all 2¢)+ 74 Efv re.

de> d; and any 70, ),

(iv) Uniform stability: Given any d.> d., there exists a
8 do)>0 such that [I£yl<8 d,) implies [I&DlI< d,
for all t=t¢,.
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M. Flexible joint manipulators
Consider an n serial link mechanical manipulator. The
links are assumed rigid. The joints are however flexible.
All joints are revolute or prismatic and are directly
actuated by DC-electric motors. For the flexible joint
q,= [42 q4 ”_an—Z q2n] T
an‘l] T

robot define vectors and

3 2n~3

a2= (g @ ¢ , where ¢?% ¢*...are

link angles and ¢', ¢%... are joint angles. We model
the joint flexibility by a linear torsional spring at each
joint. We assume that the rotors are modeled as uniform
cylinders so that the gravitational potential energy of the
system is independent of the rotor position and 1is
therefore a function only of link position. The flexible
joint manipulator can be expressed in terms of the
generalized coordinates [2]:

Xgy)q1+Clay, a)a,+Ga))=Kla,—q)), (2)
Ja,+K(g~a)=u, 3

where IXgq,) represents the inertia matrix of links,
C(q1, 41)q, represents the Coriolis and centrifugal force,
G(g,) represents the gravitational force, and u denotes

K is a constant
torsional  stiffness

the input force from the actuators.
diagonal matrix representing the
between links and joints (hence K ™' exists). J is the
inertia matrix of actuators.

IV. Robust observer design
We first consider the system with constant un-
certainty. Flexible joint manipulators system (2),(3) is

considered. Let Xlquv X2=q'1, X3=(12 and X4=
gp also x,=1XT X117, 2= (X% X117, and x=

[xT x71 7. Then we construct the state equations as

() =f1(x1(9,0)+B,(x,(D, 0 )x ), 4)
%200 = f2(x(D), 02) +B,(0)ul( D), ®)
where
0.1
Filx,00)= s
fu(x 1,01) (6)
fulxy,00)
=—D Yq1,00Cq1,d1.060)4a, D

‘Dﬂ((ll ,00)G(q,,00)—D _1(01, o)K(o)a

fox,09) )
'y
—]_I(Uz)K(O'z)qz+]_1(0'2)K(0'2)q1

0 0
D™ Nqy,01)K(0y) 0 ],

8)

B(x,,0))=

0
Bz( O'g) = l (9)

]71(62)

Here 0,€R°” and o0,eR° are uncertain parameter
vectors in (4) and (5) respectively.

Assumption 1: The parameter vectors are such that
6,€2,CR" and 0,€3,CR"* where X, %, are presc-
ribed and compact.

With the dynamics for the flexible joint manipulators
systems (4),(5) we omit the arguments if a confusion

does not arise. We assume that link angles ¢, and link

angular velocities ¢, are measurable. To design obser-

ver define
e|r=q,— C;l, e'1=q'1— (;1 , 1o
€y =(qy— (;z, 8‘2:4.2_ 1;2 . av
Here, ¢, and (f 1 denote the estimated link angles

and link angular velocities respectively. ¢, and as
denote the estimated joint angles and joint angular
velocities. We try to design an observer such that
e, e, e, and e, converge to some reasonable value or
zero possibly. Let w,= [¢7 ¢,  ¢T (ﬂ-T] T, For given
S\=diag (5] axu. 5120, we have functions %£,( ),k

(+) as follows:

hiw,, ey, e, g2,07)
:=D(a,.0) D (¢ Xy, q) 41 +Clay)

+ 5~1(q])(E( a,- 72)—Kpe1~K ,€) (12
— g1, 41,00 41 +Gla)—K(q,— q)
—ﬁ(al,ﬁl)5*1((11)51(8.1‘*’5161).

hz((h-q.l,el,e‘l,h) )
::“G(QI»U})"K(O‘I)61+D(QI,01)5121 (13)
+C(g,,4,,0)5 e,

where
Xgy,00)=Dqy,0))~Day),
g1, d1,0)=Clay,q1.0)— a1, q0).
Glay,00)=Glg1,0))—G(ay), (14)
Ky =diaglk y; 1 nxn, kni0,
K = diaglk g | yxur k0.

Here, the “overbar” over parameter represents the

nominal (ie, known) portion and B, is constant whose
proper value is shown later. We choose a function
010 R XR"XR"XR"—>R , such that for all ¢,€3,,
“hl_(wl,el,2.1,.(;2261)4‘112(41.(1-1,81,6.1.01)“ (15)
< o, (wy.er, e, q2).
Assumption 2 : There exists a Ag(g,) for all ¢g,eR”
such that

oy, =Da1,0) D7 (@)l =:Ax(g )<l (16)

This assumption implies that the nominal value D is not
far from IXq,,0,). In special case that D=D then
A{g)=0 and that assumption holds. Practically, this

assumption can be checked since the inertia matnx
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(g, 0) is uniformly positive definite for all ¢, there

-1 stemming from Assump-

shown later,

exist positive ¢! and o

tion 4, which will be If we choose

T)_l=lcl, where c=%( ™'+ ¢7"). It can be seen
—-1

-1_ —
that AE(ql)S—L,lJr—gjﬂ. Since we can choose D
a
satisfying Assumption 2 we can see that the assumption
is reasonable.
Let the function o R¥xXR"XR"XR"R, be chosen
such that

pl(wlyelye.lv qu_Z o an
Z(I_AE(CII))-Ipl(wl,el,el, g2).

Let z,=[el €717 and z,=[e} ¢} ]17. Now we are
ready to design a robust observer. For given €,>0, we

propose a robust observer as follows:

B(lll) ;.1 +E(l11,4.1) ;1 +E(01)+R( 51— 52)=‘Ul, (18)

7 @ +K( g~ dD=u (19)
where
1)1=_Kplel—K,,le'l"‘,BI(e'|+S]el)+ﬁl, (20)
pi(wy,z1, @) ©@n
(wy,21, 42) R
Ei1.2) qu Pl(wl,zl. q;)
et (s 2y, @)l
iflle (w2, g2ll>ey,
= w,,21, d2) -
_ﬁ(_lsl_l__‘lz_pl(whzh P
if||/11(w1,21, 52)”351.
piwy, 2y, ¢)=(e,+SeDo(wi.2,, q9). (22)

We see that the proposed observer relies on the

information ¢, and ¢; and those estimated states

@1, ¢ and gy It does not use any joint information
on ¢, and ¢, And, the selection of B, is shown later.

From the proposed observer we have error dynamics
for links and joints. First, subtracting (18) from (2) we
have:

De' | +Ce | +G+K(e,—ey)=v,+g,, (23)
where
g(w,, ey, 6'1. (IAz,Gl)

== NXa1,00) a1 gy, o) a (29)
+G(g)—R(a)(a,— a2).

From (18) we get

X~ D 'K( 4,— d)- D 'v) (25)
_C qxl ‘*‘E“‘k( 6;1_ lIAz)

Substituting »; in (20) and 4,(+) in (12) it can be

seen that
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£1

:"ﬁ(- —ﬁ“l—é 1;1 - 5_15‘ BVIE( é\l"“ (IAz))
+DD T (~Kpe1—Kae,—B1(e1+Se)+p) (26)
~C 4, +G-R( 4,— @)

=h,+DD7'p,

=k, +(DD ' =Dp,,

where [ denotes the unity matrix with dimension #Xxn.
Therefore, error dynamics for links follows from (26)

Dé'l+Ce'1+G+K(elfe2) @7
=v,+h,+(DD '-Dp,.

Next, subtracting (19) from (2) and substituting (19) we
get

Je,+Ke,

=K€1_] l;-z -K( 62_ 51)

=Ke\—JK— J'K( 2= d)+ T 'w (28)
-R( ¢,— q1)

=:hy(ey, 41, d2.%,02).

Based on states z, we can show (28) as follows!

. 0 I 0
) ={ 22+ ]h;g
-J'K 0 J7!
0 I
= 23
-L, —L;
0 0 0
+ Zz+ ]hg (29)
L\~-]J7'K L, J!
=Ayz,+My(05)z,
+By(o)hse, qg2.u,02),
where
0 I
A2=
_Ll _L2
0 0 0
Mz= ,B:)_:[ ], (30)
L\—-J7'K L, 77!

Ly, L,=R™" 0.
Choose P, such that it is the solution of

ATP;+PA,=—Q, Q0. (31)

Now, we are ready to select B, in v, shown as (20).
Let

dli = HPzlel,dzl = ||Png”,

dy =177 ' KI+IRI,

. (32)
de=I7100007 1,
lp=|Kl+d3, I3 =ds.
Selection of B, is chosen as follows:
Define
Ay =min{ A nin(K p),A min (S 1K )} (33)

where A in( ) represents the minimum eigenvalue of
the designated matrix.
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Step I' Select 1, to satisfy A4, —r.d5/,>0, for r,>0.
Step 2: Select r, to satisfy

A min(QZ)_Zdl—dZZITEI

~2d3l,~ 5 eI 50, for 7,30,

Step 3: From appropriate value for r; bhased on Step
1 and Step 2 choose B, such that 8,— % THIKH> 0.

Assumption 3: g1,¢; and control input # are bounded
by constants ¢,,¢; and cg

g (all <, TP

te[0, ) lla (Dl =:c <o,

g (ol < . _3UP

te[0, o) fla )l =:c 3¢ 00, (34)

lu(oll <, 9P

tel0, o) ”u(t)” =:¢ 300,

Assumption 4 : The inertia matrix IXg,) is uniformly

positive definite and uniformly bounded from above and
below; that is, there exist positive scalar constants
¢ and ¢ such that

al <Xg)< oI Vgq,€R" (35)

Theorem 1 : Subject to Assumptions 1-4, the system
(27) and (29) is practically stable under », in (20).
Prodf.

Choose Lyapunov function candidates as follows:

V(Zl,zz)z V1(21)+Vg(22), (36)
where
Vl(Z]) = % (e.1+5121) TD( e.1+Slel)
+ 5 el(Ka+SiKe, 37

Vizy) = 25 Py 29, (38)

We see that both V|, and V, are legitimate Lyapunov
function candidates. We shall prove that both V|, and V,

are positive definite and decrescent. Based on Assump-
tion 4,

Vl = %d|€.1+5131”2+%€1T(Kpl+S]Kvl)Zl
= %Q;l( 6-11’24”251i€‘1:€1i+3%i621i) (39)
+ —%gl(kpli-}_slikvli)e%i
1 A - o
= i izl[elzeli]gli €|
where
g 3%i+k1)1i+s WRai O Su
Qli L= . (40)
g Sy g

where e,, and e;; are the i-th components of e, and
e,, respectively. Since 2,0 Vi, V, is positive de-

finite:

Vl < % [E[Amln( Ql,)(€2h'+ e‘liz)
(41)
> iz %
where
=g T A Q=120 ) (@)
Next, with respect to the bounded from the above
condition:
11— o, 1 7
Vl < 2 O|l€1+51€1|| + 2 e](Kpl+SlKvl)el
= '%“ Eizl( e.n'z+231;‘6.11'@1:""5%1‘@21;') (43)
+ % lz::l(kolz+s lz'k ulz')e%i
] & i S
:5 iz::l[en ey ] Qujen
where
E s%z+kpli+slik vli 5 S
§1, L= - — . (44)
g Sy o
Therefore, we have
Vl = % g]’l max( §lz)(e211+ 2-112) (45)
< 73 llz %,
where
74 3:% mz;x { ar,n;lle A max .51;'),1’=1,2,"',n.} (46)

V', is also positive definite and decrescent. This is since

A min(Pllzall*<2] Py 2,<4 max(Pz)”Zz”Z~ (47

The derivative of V| along the trajectory of system (27)
is given by

Vl =(e'1+51e1) TD(é’1+Sle'l)
+%(e'|+51e1) TD(6-1+51€1) (48)
+el(Kn+S.KDe.

From the skew-symmetric property in D—2C it can be
seen that

Vi =(e,+Se) (—G—K(e,—ey)
+DS e, +CS e tg tvy) (49)
+e1T(KD1+SlKvl)e‘l-

According to (13), it can be seen that

V1 =(e'1+51e1) T(h2+g1+l)1)
+(€.1+5121)TK €9 (50)
+e{(Km+51KUl)é1.

It follows from (20) and (26)

Vi =(eé,+Se) Nhy+h+(DD ' —Dp))
+(e'l+Sle1)T(‘Kp]elAKv,e.1) 1)
—(e1+Se) " (B,(e +Se)+p)

+e (K y+S K )e +(e,+S1e) K e,.
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From (16) and (33) it can be seen that

Vi <lle, +Seill 1k, + k)l
+lle +Siel ID D =11l il
—Bille +Se)ll*~ Allz I
+lle +S el 1Kl lledl+(e,+S1e)p, (52)
S”63‘1*“5161” ;1*‘”@-14’5191”15 o1
+(e;+S1e)p— AlzifI*=Bille; +Sell®
+le+S el 1K lleall.

If llz4li>e, then the first three terms in (52) become
lle, “*'5131” p1t+lle; +S1€1”‘/1 o1+ +Se)p,
S”el+Slel”(1-/15)()1+“€1+5191|ME [ (53)

—lley+Seillo;
=0.

If llzll<e, then it becomes

He.1+S|e]H ;1'1'”6'1‘*'51@]“/] Epl'i-(e.l +Slel)pl

Slle.1+Slelll(1—2/1 peitllei+Siellis o (54) |
~ue‘1+sle1n2§—ll
e
Therefore, V, is bounded:
Vi <= AillziliP=8ille,+S el )

e+ el 1Kl lleall+ 5.

Based on inequalities abS% (@*+8%), a,b=R, and

leall?<llz,)|?, for any constant 7,>0, V, can be seen

that

V1 < - /_11”21”2‘/31“6'1+S1€1”2
+ 3 rilley+S el 1K

+ 3 e TIKI el + 5 (56)
< = dillz P~ (8= 5 2 llKIlE+S el
g eI Nzl

Next, the derivative of V, along the trajectory of (29)

follows from (32)
Vz = 225 P2 2'2
2Z;P2(A222+M222+th3)
—ngzz‘z—FZngzMzzz+22§Pszh3
< =4 mn (@212 202 AP M (57)
+2z )l 1P2Bll Al
= —4 min(Qz)”22”2
+2d /1212 +2d |z 5]l 1Al

It

If

Here, from (28) we have the following bounding con-
dition from Assumption 3 and (32)

|2l 3
<K el +17T 7Kl 1| @2~ ql
T T el IR G, gl
=Kl el +d3ll g2~ g\l +d il
<IIKIl lle il +d5(llesll +llell +ligall +lig, ) 58)
+d 4l
<|IKl lledll +ds(lle i +llegl +c2+c1) +dycs
=Kl tdlle )l +dallesll +d3(c,+c) +dyc;
=l||lell|+lznez“+13,
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where l3=d; (c+¢jy) +dcs.
(58)

Thus, V, follows from

Vi <=2 (@217 +24 Izl
+2d |zl el + Zollesll +15) (59)

<= (A min(Q2)—2d Dllz 2”2 +2d 5440|245l Nz )
+2d 5l ollz 17 +2d 51 ollz ol

By using the inequality for the second term in (59) with
7570 we have

Vy €= (A ma(Qn) —2d Dz lf*
+d ol (o5 lzgll2 +24llz 1P
+2d o5l 4lI* +2d 50 12 (60)
=— (A min (Q@3) —2d 1 —d sl 77" —=2d 31 )zl
+12d o0 ll2 17 +2d 20 5l1z 1.

Now, using (56) and (60),
V= V+V,
< —7}1”21”12“712”22”2- 61)
’(51_§T1”K]D”el+s1€1“2

+2d 501zl + —54—1 ,
where
7y = A1—To.dsl,,

7ot = Amn(Qy) —2dy~dolye5 ~2dsly, OO

-3 oKL

If we choose ry,ry, and B such that 7,50, #,>0, and

Bi— % ,llKl|>0 then we have
Vs —min{n, 7ot t2dodllad + S g
< —min{fin.7/2}HZI|2+2dzlglIZH+f4—‘.

Therefore, V<0 for all ||zl|>R,, where

0’2134‘\/((1’213)2-l-min{771,772}%1L
min{7,, 7.} :

z

(64)

Following (64) for »,=>0, if llzy/l<7,, we can satisfy
the requirements of uniform boundedness, uniform
ultimate boundedness and uniform stability by selecting
10

Y

R’ZV —= ifr <R,
1

didra)= ra b iroR., (65)
1

<

T d,r.)
0 it r.< d,) 2t
. 72
_ 2—Frs d
= T, 7’2172— Zdzs othe?’wise, (66)
min{7y, 75} R, =
8. d)=R,, 67)

where
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yi=min{7},A mn(P2)}, v2=max{r} A max(P3)},
T -7 ,, Y1 G -1
Rz_ dz 7s d= 71 °72(R). QED.
Remark 1: The proposed observer handles the flexible

joint manipulator system with uncertainty. The error
system in (27,29) satisfies practical stability. Thus, the

estimation errors have uniform ultimate boundedness ball
d, after time T,.

Remark 2 :For the proposed observer we need the

information on the boundedness of ¢,,¢;, and «. This

constraint is less strong than the boundedness of ¢, in
[5] since angular velocity may have large value in some
cases.

Remark 3 : The design parameters in observer design
Ky, K, ,S,, L, and L, decide uniform ultimate ball

size which is expressed as R, in (64). In details,
K,.,K,,and S, contribute to the magnitude of #

shown in (62) and determine the estimation time. Also
L, and L, affect a constant d, in (32), which is also
affecting ultimate boundedness ball size. The bigger one
choose those parameters the bigger the uniform ultimate
ball size becomes. Thus, we need to consider a
conservativeness in observer design and a careful
selection of those parameters gives a nice estimation
performance. Fortunately, we have a room to adjust the
ball size by a suitable choice of €.

V. System with time-varying uncertainty

We have considered the system with constant un-
certainty in section IV. When some parameters are
time-varying in case the system has time varying
payload, inertia and stiffness in joints, we can not use
the skew-symmetric property on D—2C in stability
analysis [12]. Therefore, in this section we want to show
another observer design procedure for the system with
time-varying uncertainty by modifying the procedure
shown in section IV.
¥R-Z\CR”, a4( )
:R~3,CR°* are Lebesgue measurable with X, 2,
prescribed and compact. Furthermore, the mappings
g.( - 2R—>Z,CR”, 6, )R>Z,CR™ are Lebesgue
measurable with %, X prescribed and compact.
The k,y(-) in (12) is changed to

Assumption 5 : The mappings o,( -

holay, 0-1._@1, e.lrdlgt)’ a.(8)
=—g1,q91,0,(N e —GClg,,0,(H) (68)
—K(o,(D))e,+Dq,,0,())S, e,

+ 3 Kay, 41, 01(D, 61 (D(E1+S e ).

This in tun shows a different bounding function
0.(q,,4q,) in (15) as following.

e wy, e, e, d2,0,(H)
tholgi,qr.er. ey, 0,(8), o, (I (69)
< o\(wy, e, e, 42), Vo2, Vo€,

Based on the different bounding function we use the
same procedure derived in Section IV to obtain »,(-).
We can also see the difference in (49) for the system
with time-varying uncertainty when proving Theorem 1.
As there is no longer skew symmetric property in
D—2C, we need the modified #4,{(-) as (68) to prove
Theorem 1.

Fig. 1. 2-link flexible joint manipulator mechanism..

VI. lllustrative example
Consider a 2-link fiexible revolute joint manipulator
(Fig. 1). Let link angle vectors ¢,=[¢” ¢* 17 and joint
g2=[q"' ¢* 17. First, we consider the
system with constant uncertainty. Then we have
gy, gy, ¢y, Glg), Jand K

angle vectors.

—[dn dp
Dy =8 g2 ] (70)
(g1, q1) ) . . (7D
—mol il gsing*qt —m,llgsing*(g*+4?)
mal l gsing’q?® 0
(m [ q+myl)gsing?+myl pgsin(g®+4?)
Glg)= (12)
mzldgsin(qz+q4)
- =151
O]Z]K[OKZ]S OSm’ @
k k 0
K,=|"%n , K, =] "% , (74)
” [ zm] ' [ U )

where



MOt - IS8t - NARIES =2A1 M2dH H43

dy i =2ac0s(g?) +ap,
dyp:=ancos(gD+azn, dy=dp,

dp:=az, (75)
an=myllg,

a12=mz(lzl+12dz)+m112d+11+]2,
azz-’:lezcg"‘Iz.

Suppose that D, G, and C are known. Then we have

hi(-)=—C §q, +G~K( ¢\~ do), (76)
h2()=—'G—K e1+D51 €.1+C Sl e;. (77)

Thus, we obtain a bounding function p,( ) as follows:
e +holl< 0. (78)

Since D is known we have Az(g,)=0. This gives a

bounding function o,(-)= ©,(+). We choose

1000
_r 10 _lo100
L,=L, [01], @, 0010 (79)
0001
0 0 1 0
_|lo o 0o 1
Az=| 2y 0 -1 0 )
0 -1 0 —1
(80)
15 0 05 0
p,=| 0 15 0 05
7los 0 1 0

0 0 00 0 0

My=| O 0 00 g 00 @y
=g 0 ol
_K, 0
0 1 T 01 J2

We choose B;=35 based on Step 1, 2 and 3 shown in

section IV. Now, we design v, as followings:

vy :’_Kﬁl.el_Kvl e.l &)
—B,(e;+S,e)+p,,
where
1+ S o
_T(Ieilligfll_l)l—pl if lle;+Sielllor>er,
M7 ei+sien (83)

€, 01 if “6.1“*'51@1”001351.

For simulations, we consider system performance with
varying design parameters such as K,, K,,

S1, L, Ly and &,. We choose m; = m,=0.16 kg,

la=15=0.25m, ,,=0.5m, I,=1I, =0.031kgm’,

K, =K,=31.0 Nm/rad,

Li=7,=0.004 kgm’®, K= K,=15.5 Nm/rad,
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Ti=T=0.002 kem’.

We change the design parameters and investigate the
estimator performance. Simulation results are shown in
Figs. 2-4. Fig. 2 shows the history of estimated states

by choosing K,=K,=S= 1(;)(5)] and ¢,=100. We see

that the estimated states track the real states regarding
link and joint. After 2 seconds all estimated states
converge to the true states. Fig. 3 show the estimation

ne angies [rag)

—a)

Jomt anpies [raa)

i
e
v
—-a

ink anpula’ veiocities Ira/sec]

iar veiocaws |rac/sec
2

o
; T
.c’, " f—==da
‘ e Lsec]
Fig. 2. History of estimation with. (K,=K,=
_[100 _
Sl O 5 ], €] 100)
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———g
2
thow lvec) '
§ — Ja}
H
i
“w
9 e e —
t ° - - AR
2 . fa—
2T . - . -
Hiiw (suc)
Fig. 3. History of estimation with. (K,=K,=
S 2[5 0 61250)
lo 25 )

5 0
0 2570

=50. It takes somewhat longer time for estimated states
to converge than the first case. Since we reduce
K,, and K, this affects the rising time but arises a

performance by choosing K,=K,=S, =[ &

smaller uniform ultimate bound ball size than the first
case. In Fig. 4 estimation performance shows by

choosing design parameters K, = K, = S, =[10 0

0 51V

Link anpies {rac]

[ 1 3 . 5 L3 a .
tima tuuc)

Joint angies [rea]

° ' 3 . s ' . [
e {oec)

Link anguisr veiocities [rec/sec’

time (sec]

Joint anguter velocities [rad/sec)

tine tasc)

Fig. 4. History of estimation with.

SI: 100 qj], 51:10)

( Kpl = K,,]=

and & =10. Reducing &, gives a small uniform bound

and ultimate bound size. However, we see somewhat
chattering in transient region. Comparing three cases we
see that K,, K,, S5 and ¢

performance. In other words, increasing K, and K,

contribute the system

results in reducing estimation time to reach within a

appropriate  estimation range and increases uniform



MO - AiSst - ANEIsS =24 M2 3 M4z 19% 12

ultimate bound ball size. Decreasing &, results in some

chattering while being estimated. Furthermore, the
bounding function e;( -+ ) depends on S|, hence a large
S, gives a large estimation effort, which is represented

by ()

mance based on the proposed ohserver we see that the

in (82). Considering the estimation perfor

estimated states are well tracking the real stales in good
shapes.

VII. Conclusion

We have developed a robust observer design for
flexible joint manipulators, which have uncertainty
(constant or time-varying). The estimation error dy
namical system is practically stable under the designed
observation algorithm. Robustness properties of the
observer is designed. The observer requires the mea—
surcment of the link positions and velocities.

The proposed observer guarantees practical stability as
long as link and joint positions and control input are
bounded. The further designing a
based on the observer

work extends to
controller proposed

algorithm.

design

References
[11 L. M. Sweet and M. C. Good, “Re-definition of the

robot motion control
drive
Requirements,” Proceedings 23rd IEEE Conference
NV, pp.

problem: effects of plant

dynamics, system constraints, and user

on Decision and Control, Las Vegas,
724731, 1984.

[21 M. W. Spong, “Modeling and control of elastic joint
manipulators,” ASME' Journal of Dynamic Systems,
Measurement, and Controf, vol. 109, pp. 310-319,
1987.

[3] S. Nicosia and P. Tomei, “Feedback control of
elastic robots by pseudolinearization techniques,”

25th Conference on Decision and Control, Athens,

s=ss

19639 79 204, 1986 Mg ¥
o 71AAAs &4 1988y & i
2 TAAE ) EGAAD. 1995
u]<¢ Georgia Institute of Technology
E(ukAh). 19883 ~ 1991 A%
T A 1995 ~ HA A
i FEdTA SddtYy T Eoks wdE Ao,

Ag Ao, A Ao

(9l

[10]

(11]

[12]

278

Greece, 1986.
A. De Luca, A. Isidori and F. Nicolo, “Control of
robot arm with elastic joints via nonlincar dynamic
feedback,” Z4th Conference on Decision and Con
trol, Fort Lauderdale, FL., 1985.

P. Tomei, “An observer for flexible joint robots,”
IEEE Transaction on Automatic Control, vol. 35,
no. 6, 1990.

P. Nicosia, P. Tomei and Tornambe’, “A nonlinear
observer for elastic robot,” IEEE Journal of Ro-
botics and Automation, vol. 4, no. 1, 1988,

B. Friedland, “On the properties of reduced-order
kalman filters,” IEEE Transactions on Automatic
Control, vol. 34, no. 3, pp. 321-324, 1989.

E. A. Misawa and J. K. Hedrick, “Nonlinear obser-
vers: a state-of-the art survey,” ASME Journal of
Dynamic Systems, Measurements, and Control, vol.
111, no. 3, pp. 344-352, 1989,

J. -J. E. Slotine, ]. K. Hedrick and E. A. Misawa,
“On sliding observers,” ASME Journal of Dynamic
Systems, Measurements, and Control, vol. 109, no.
3, pp. 245-252, 1986.

M. J. Corless and G. Leitmann, “Continuous state
feedback guaranteeing uniform ultimate boun-
dedness for uncertain dynamic systems,” IEEE
Transactions on Automatic Control, vol. 26, no. D,
pp. 1139-1143, 1981.
Y. H Chen and G
uncertain systems in the

Leitmann, “Robustness of

absence of matching
assumptions,” International Journal of Control, vol.
45, pp. 15271542, 1987.

D. H Kim and Y. H. Chen, “Robust control design
for flexible joint manipulators,” to appear in Jjournal

of Control and Systems, 1996.

o o ¢

194211 7€ 6914, 1966 M &l &l
ZNAEE £ 19713 5 Aachen
et ZIA Y} EQ (A, 1978 =
o Aachen W&tul £<J(ubAh). 19941 ~
1996 At gkl 4% 19964
~ #HA A& FiAAMAS Y wp

L sk At 3 A FuAlRobE ¥R

Mo H



