Process for the Preparation of Conducting Polymer Composites (II) : The Effect of Polymerization Parameters on Conductivity

전도성 고분자 복합체 제조를 위한 신합성 연구(II) : 중합변수에 따른 전도성 고분자 복합체의 전도도 변화

  • Son, Suk-Hye (Polymer Materials Laboratory, Department of Chemical Engineering, Yonsei Univ.) ;
  • Pak, Young-Jun (Polymer Materials Laboratory, Department of Chemical Engineering, Yonsei Univ.) ;
  • Kim, Jung-Hyun (Polymer Materials Laboratory, Department of Chemical Engineering, Yonsei Univ.)
  • 손석희 (연세대학교 화학공학과 고분자 소재 연구실) ;
  • 박영준 (연세대학교 화학공학과 고분자 소재 연구실) ;
  • 김중현 (연세대학교 화학공학과 고분자 소재 연구실)
  • Received : 1996.05.06
  • Accepted : 1996.11.14
  • Published : 1996.12.10

Abstract

The conducting polymer composites were prepared by imbibing the porous particle wish the $FeCl_3$ oxidant solution, drying the imbibed porous particle, and imbibing again with pyrrole solution for polymerization to take place in the pore of porous particles. The effect of synthesis conditions on the conductivity of composite polymers were investigated. It was found that the conductivity of composite polymers was dependant on the concentration of pyrrole monomer, nature of the oxidants and solvents used for the oxidant and pyrrole, which influence the degree of penetration/distribution of polyprrole in the composite and reaction of dopant with pyrrole.

본 연구는 다공성 입자에 전도성 단량체를 침투시켜서 전도성 고분자 복합체를 제조하는 연구로 다단계 seed 중합법을 이용하여 입자를 제조하고, 용매추출법으로 선형 고분자를 제거하는 방법으로 specific pore volume 및 specific surface area가 각기 다른 다공성 입자를 제조하였고, 이 다공성 입자를 모체 고분자로 하여 도핑제를 산화용액에 녹여 흡수시키고 건조한 뒤 전도성 단량체를 유기용매에 녹여 다공성 입자에 침투시킨 후 중합하여 전도성 복합체를 제조하였다. 이때, 모체 고분자에 침투되는 전도성 단량체의 농도 및 유기용매와 산화제의 산화용매 등을 중합 변수로하여 이 변수들과 전도도와의 상관 관계를 살펴보았다.

Keywords

Acknowledgement

Supported by : 교육부

References

  1. Conductive Polymers Kanatzidis, M. G.
  2. Handbook of Conducting Polymers Skotheim, T. J.(ed.)
  3. Conducting Polymers : Special Applications Alcacer, L.(ed.)
  4. Acc. Chem. Res. v.8 Bredar, J. L.(et al.)
  5. Electrochemical Science and Technology of Polymers-1 Linford, R. G.(ed.)
  6. J. Chem. Soc., Chem. Commun. Armes, S. P.;Vincent, B.
  7. Scientific Methods for the Study of Polymer Collids and Their Application Candau, F.
  8. Electrically Conductive Organic Polymers for Advanced Applications Cotts, D. B.;Reyes, Z.
  9. Synthetic Metals v.1009 Kulkarni, V. G.(et al.)
  10. Colloid & Polym. Sci. v.271 Beoman, M.;Armes, S. P.(et al.)
  11. Macromol. v.25 Beadle, P.;Armes, S. P.
  12. Ph.D. Thesis, Lehigh Univ. Morphology of Core/Shell Latexes and Their Mechanical Properties Merkel, M. P.
  13. Colloid & Polym. Sci. v.222 M. Okubo;M. Shiozaki(et al.)
  14. J. Colloid & Interface Sci. v.222 C. M. Cheng;F. J. Micale(et al.)
  15. Polymer v.35 M. L. Digir;S. N. Bhattacharyyn(et al.)
  16. J. Appl. Polym. Sci. v.42 E. Rukenstein;J. S. Park
  17. J. Appl. Polym. Sci. v.43 E. Rukenstein;J. H. Chen
  18. Advances in Emulsion Polymerization and Latex Technology El-Aasser, M. S.(et al.)
  19. J. Polym. Sci., Part A ; Polym. Chem. Ed. v.30 C. M. Cheng;F. J. Micale(et al.)
  20. J. Polym. Sci., Part A ; Polym. Chem. Ed. v.30 C. M. Cheng;J. W. Vanderhoff(et al.)
  21. J. Appl. Polym. Sci. v.43 Montgomery, H. C.
  22. J. Appl. Polym. Sci. v.42 Logan, B. F.
  23. Conjugated Polymers Schimmel, Th.(et al.);Bredas, J. L.(ed.)
  24. Conjugated Polymers and Related Materials Salaneck, W. R.(et al.)
  25. Handbook of Conducting Polymers Chance, R. R.(et al.);Skotheim, T. J.(ed.)
  26. J. Korean Ind. & Eng. Chem. v.2 S. H. Son;Y. J. Park;J. H. Kim
  27. J. Korean Ind. & Eng. Chem. v.6 S. Y. Oh;H. C. Koh