A Study on the Heat Storage System for Chemical Heat Pump Using Inorganic Hydrates (III) -Numerical Analysis of Heat Transfer in Ca(OH)2 Dehydration Packed Bed-

화학열펌프에 있어서의 무기수화물계 축열시스템에 관한 연구(III) -Ca(OH)2 탈수반응층의 전열해석-

  • 박영해 (계명대학교 공과대학 화학공학과) ;
  • 이영세 (계명대학교 공과대학 화학공학과) ;
  • 김종식 (계명대학교 공과대학 화학공학과)
  • Received : 1996.09.09
  • Accepted : 1996.11.04
  • Published : 1996.12.10

Abstract

To develope chemical heat pump, which is operated by heat of high temperature using available energy sources such as solar heat and many kinds of waste thermal energy we have studied theoretically the enhancement effects of inserted fins on the rate of heat transfer and reaction in cylinderical $Ca(OH)_2$ packed bed reactor. The results obtained by numerical analysis about profiles of temperature, completion time of reaction and exothermic heat amount released from the reactor read as the inserted copper fins in reator reduce the completion time of dehydration reaction in packed bed by half, and the rate of thermochemical reaction depends on the temperature and concentration, and it is also governed by the boundary conditions and the rate of heat transfer in the particle packed bed.

본 연구는 고온용 열구동형 화학열펌프에 있어서 폐열 및 태양에너지를 유용하게 이용하기위한 목적으로 $Ca(OH)_2$ 탈수반응시 원주형 반응기 충진층내 핀을 주입 전열촉진한 경우의 전열 및 반응촉진효과에 대해 이론적 평가를 행하였다. 그 결과 탈수흡열 반응시 반응층내 온도분포변화, 반응완결시간, 방열량에 대한 수치해석 결과 구리판 전열핀을 설치한 경우 입자 충전층의 탈수반응 소요시간을 크게 단축시킬 수 있었으며, 본 실험조건 하에서는 전열핀을 주입하지 않았을 때보다 탈수반응 소요시간이 1/2정도 단축됨을 알 수 있었다. 또한 해석결과 열화학반응은 온도 및 농도에 주로 의존하였고, 경계조건과 입자충전층의 열전도도에 의해 크게 좌우되었음을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Kagaku Kogaku Ronbunshu v.11 H. Matsuda;T. Ishizu;S. K. Lee;M. Hasatani
  2. Chem. Eng. Sci. v.39 S. I. Pereira Duarte;O. A. Ferretti;N. O. Lemcoff
  3. Numerical Heat Transfer v.9 C. H. Lai;G. S. Bodvarsson;P. A. Witherspoon
  4. AIChE J. v.34 H. S. Kheshgi;P. S. Hagan;S. C. Reyes;J. C. Pirkle
  5. J. Korean Ind. & Eng. Chemistry v.7 Y. H. Park;S. J. Chung;J. S. Kim
  6. Int. Chem. Eng. v.7 R. Krupiczka
  7. AIChE J. v.7 D. Kunii;J. M. Smith
  8. Int. J. Heat Mass Transfer v.30 R. N. Pande;F. Gori
  9. ASME. J. Solar Energy Engineering v.110 J. G. Ingersoll
  10. AIChE J. v.3 S. Yagi;D. Kunii
  11. Int. J. Heat Mass Transfer v.21 D. J. Gunn
  12. Compact Heat Exchangers W. M. Kays;A. L. London
  13. CRC Handbook : Materials Science and Engineering(2nd ed.) J. F. Shackelforf;W. Alexander;J. S. Park
  14. An Introduction to Transport Phenomena in Materials Engineering D. R. Gaskell
  15. J. Heat Transfer v.110 M. L. Hunt;C. L. Tien
  16. J. Solar Energy v.15 Y. H. Park;J. S. Kim