A Study on the Film-Formation Mechanism by Ionized Cluster Beam Deposition

이온화 클러스터 빔 증착의 박막 형성 기구에 관한 연구

  • 신치범 (아주대학교 화학공학과) ;
  • 이경호 (아주대학교 화학공학과) ;
  • 황경순 (서울대학교 화학공학과) ;
  • 문상흡 (서울대학교 화학공학과) ;
  • 조원일 (한국과학기술연구원 화공연구부) ;
  • 윤경석 (한국과학기술연구원 화공연구부)
  • Received : 1996.01.16
  • Accepted : 1996.05.06
  • Published : 1996.06.10

Abstract

The mechanism of thin-film formation by Ionized Cluster Beam Deposition(ICBD) was investigated. A simulation program based on the Monte-Carlo method was developed in order to investigate the effects of the acceleration voltage, substrate temperature, activation energy for the surface migration, and critical nuclei size on grain size and surface roughness. Studies of the effect of kinetic energy of clusters on the film formation processes revealed that high acceleration voltage enhanced the surface-migration of adatoms and made it easier for an epitaxial film to be formed. The relaxation time of kinetic energy of adatoms increased with the substrate temperature, which in turn increased the grain size of the crystalline film. This effect was more clearly distinguished when the critical nuclei size was large. The surface-migration activation energy was found to affect the interaction between the adatoms and the substrate and thus the relaxation time of kinetic energy. Investigations of the surface roughness revealed that the acceleration voltage, the substrate temperature, and the surface-migration activation energy exerted a collective effect on the morphology of the film surface.

이온화 클러스터 빔 증착에 의한 박막 형성 기구를 연구하였다. 가속전압, 기판온도, 표면이동 활성화에너지, 임계핵 크기 등이 박막의 결정입자크기 및 표면 평활도에 미치는 영향을 조사하기 위하여 Monte-Carlo방법에 근거한 전산 모사 프로그램을 개발하였다. 클러스터의 운동에너지가 박막형성에 미치는 영향을 관찰함으로써 높은 가속전압이 입자들의 표면이동에너지를 증가시키며 단결정막의 생성을 용이하게 함을 알 수 있었다. 기판온도가 증가함에 따라 입자의 운동에너지 소산(dissipation)속도는 느려지고 따라서 결정입자의 크기가 커졌다. 이러한 효과는 임계핵 크기가 클수록 두드러졌다. 표면이동 활성화에너지는 입자와 기판간의 상호작용력과 운동에너지 소산속도에 영향을 미침이 발견되었다. 가속전압, 기판온도, 표면이동 활성화에너지는 박막의 평활도에 복합적인 영향을 미치는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Ionized-Cluster Beam Deposition and Epitaxy T. Takagi
  2. Thin Solid Films v.39 T. Takagi;I. Yamada;A. Sasaki
  3. Thin Solid Films v.45 T. Takagi;I. Yamada;K. Matsubara;H. Takaoka
  4. Jpn. J. Appl. Phys. v.19 I. Yamada;F. W. Saris;T. Takagi;K. Matsubara;H. Takaoka;S. Ishiyama
  5. Thin Solid films v.92 T. Takagi
  6. Phys. Rev. v.B42 H. Hsieh;R. S. Averback
  7. Nucl. instr. Meth. v.B59/60 H. Hsieh;R. S. Averback
  8. J. Appl. Phys. v.61 K. H. Muler
  9. Thin Solid Films v.124 I. Yamada;H. Inokawa;T. Takagi
  10. Physical Chemistry R. S. Berry;S. A. Rice;J. Ross
  11. Monte Carlo Methods in Statistical Physics K. Bindel
  12. Introduction to Solid State Physics Kittel
  13. Thin Solid Films v.21 M. J. Stowell
  14. Thin Solid Films v.20 V. N. E. Robinson;J. L. Robins
  15. Phil. Mag. v.27 J. A. Venables
  16. J. Appl. Phys. v.38 H. Poppa
  17. Thin Solid Films v.2 B. Lewis
  18. Proc. 2nd Int. Conf. ion Sources T. Takagi;I. Yamada;M. Kunori;S. Kobiyama
  19. Vac. Sci. Technol. v.12 T. Takagi;I. Yamada;A. Sasaki
  20. J. Appl. Phys. v.56 I. Yamada;H. Inokawa;T. Takagi