A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell I. Synthesis of La0.6Sr0.4Co1-xFexO3 and Reduction Reaction of Oxygen

알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 I. La0.6Sr0.4Co1-xFexO3의 합성과 산소환원반응

  • Moon, Hyeung-Dae (Dept. of Chem. Technology, College of Engineering, Seoul National Univ.) ;
  • Lee, Ho-In (Dept. of Chem. Technology, College of Engineering, Seoul National Univ.)
  • 문형대 (서울대학교 공업화학과) ;
  • 이호인 (서울대학교 공업화학과)
  • Received : 1996.03.02
  • Accepted : 1996.03.30
  • Published : 1996.06.10

Abstract

Oxygen reduction in an alkaline fuel cell was studied by using perovskite type oxides as an oxygen electrode catalyst. The high surface area catalysts were prepared by malic acid method and had a formula of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35 and 0.50). From the result of XRD pattern and specific surface area due to the amount of Fe substitution and the consumption of ammonia-water, the complex formation of Fe ion with $NH_3$ was the main factor for both the phase stability of perovskite and the increase of specific surface area. Multi-step calcination was necessary to give a single phase of perovskite in catalyst precursor. The crystal structure of the catalysts was simple cubic perovskite, which was verified from the XRD patterns of the catalysts. The activity of oxygen reduction was monitored by the techniques of cyclic voltammetry, static voltage-current method, and current interruption method. The activity(current density) of oxygen reduction showed its minimum at x=0.01 and its maximum between 0.20 and 0.35 of x-value in $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$. This tendency was independent of the change of surface area.

산소전극 촉매로서 페롭스카이트형 산화물을 사용하여 알칼리형 연료전지에서의 산소환원반응에 관하여 연구하였다. 능금산(malic acid)을 사용하여 고표면적의 페롭스카이트형 $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35 및 0.50) 산화물을 제조하였으며, Fe 치환량과 암모니아수 첨가량에 따른 XRD 구조와 비표면적의 변화를 고찰하여 Fe와 암모니아간에 생성되어지는 착화합물이 페롭스카이트로의 구조안정화와 비표면적 증대의 주요임을 알았다. 그리고 페롭스카이트 단일상을 얻기 위해서는 다단계 승온처리가 필요했으며, XRD 실험결과 단순 정입방체상이 형성됨을 확인하였다. $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ 산화물을 촉매로 사용한 알칼리형 연료전지용 산소전극의 산소환원반응활성을 측정하기 위하여 순환 전압-전류법, 정전압-전류법, 전류단절법 등을 이용하였다. $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$ 산화물에서 Fe의 치환비가 증가함에 따라, x=0.01에서 최소, x=0.20와 0.35 사이에서 최대의 산소환원활성(전류밀도)을 보였으며, 이와 같은 경향은 표면적의 변화와 무관하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Chem. Lett. H. Zhang;Y. Teraoka;N. Yamazoe
  2. Powder Metall. v.22 D. J. Anderton;F. R. Sale
  3. J. Mater. Sci. v.17 M. S. G. Baythoun;F. R. Sale
  4. Chem. lett. Y. Teraoka;H. Kakebayashi;I. Moriguchi;S. Kagawa
  5. Science v.171 W. F. Libby
  6. J. Catal. v.93 T. Nitadori;M. Misono
  7. Appl. Catal. v.41 H. Zhang;Y. Teraoka;N. Yamazoe
  8. 觸媒講座 第工9券業, 觸媒反應2 觸媒化學會(編)
  9. Nature v.226 D. B. Meadowcroft
  10. Electrochim. Acta. v.35 M. Sakaguchi;K. Uematsu;A. Sakata;M. Sato
  11. Electrodes of Conductive Metallic Oxides, Part A H. Tamura;H. Yonegama;Y. Matsmoto;S. Trasatti(ed.)
  12. J. Electrochem. Soc. v.127 Y. Matsumoto;S. Yamada;T. Nishida;E. Sato
  13. Bull. Chem. Soc. Jpn. v.61 T. Nitadori;M. Misono
  14. Denki Kagaku v.44 H. Obayashi;T. Kudo
  15. Surface Sci. v.130 I. Kojima;H. Adachi;I. Yasumori
  16. Ind. Eng. Chem. Prod. Res. Dev. v.24 T. Salyama;N. Yamazoe;K. Eguchi
  17. J. Solid State Chem. v.80 J. Mizusaki;Y. Mima;S. Yamauchi;K. Fueki
  18. Solid State Ionics v.37 S. Sekido;H. Tachilbana;Y. Yamamura;T. Kambara
  19. J. Solid State Chem. v.98 P. Devi;M. Rao
  20. J. Solid State Chem. v.67 J. Mizusaki;M. Yoshihiro;S. Yamauchi;K. Fueki
  21. J. Electrochem. Soc. v.124 T. Kudo;H. Obayashi;M. Yoshida
  22. Inorganic Chemistry I. S. Butler;J. F. Harrod
  23. Chem. Lett. Y. Shimizu;K. Uemura;N. Miura;N. Yamazoe
  24. 日化 N. Miura;Y. Shimizu;N. Yamazoe
  25. New Stoichiometric Compounds A. D. Wadsley;L. Mandeleorn(ed.)
  26. J. Catal. v.120 Y. Wu;T. Yu;C. Wang;X. xie;Z. Yu;X. Fan;Z. Fan;L. Wang
  27. J. Catal. v.121 H. M. Zhang;Y. Shimizu;Y. Teraoka;N. Miura;N. Yamazoe
  28. J. Electrochem. Soc. v.125 K. L. K. Yeung;A. C. C. Tseung
  29. J. Electrochem. Soc. v.134 A. Wattiaux;J. C. Grenier;M. Pouchard;P. Hagenmuller
  30. J. Electrochem. Soc. v.122 T. Kudo;H. Obayashi;T. Jejo
  31. J. Electrochem. Soc. v.127 Y. Matsumoto;S. Yamada;T. Nishida;E. Sato
  32. J. Electrochem. Soc. v.137 Y. Shimizu;K. uemura;H. Matsuda;N. Miura;N. Yamazoe
  33. Chem. Lett. Y. Shimizu;H. Matsuda;N. Miura;N. Yamazoe
  34. Chem. Lett. v.1 Y. Teraoka;H. Fukuda;S. kagawa