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The effects of DFMO orfand putrescine on the dexamethasone-induced apoptosis of CEM cells were
studied to investigate the role of polyamines in anti-leukemic glucocorticoid action. Dexamethasone-
induced apoptosis was preceded by significant decreases of cellular polyamine contents and putrescine
uptake activity. But DFMO produced decreases of putrescine and spermidine contents and marked increase
of putrescine uptake activity, but did not induce apoptosis. However, dexamethasone and DFMO,
respectively, induced Gi-arrest in cell cycle and hypophosphorylation of pRb, resulting in the increase
of G; to S ratio and decrease of CEM cell count. DFMO enhanced the dexamethasone-induced apoptosis
and Gi-arrest. On the other hand, putrescine little affected the apoptotic and Gi-arresting activities of
dexamethasone, but almost suppress the effects of DFMO and also the DFMO-dependent enhancement
of dexamethasone effects. These results suggested that the dexamethasone-induced apoptosis to be asso-
ciated with pRb hypophosphorylation and Gj-arrest in CEM cells might be ascribed to the concomitant
decreases of cellular polyamine contents and putrescine uptake activity.
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INTRODUCTION

Glucocorticoids have therapeutic potentials of anti-
inflammatory and immunosuppressive effects, and
induce apoptosis of lymphocytes (Diasio & LoBuglio,
1996). And the lympholytic activity of glucocorti-
coids has been proved to be related to their apoptotic
activity on lymphocytes (Wyllie, 1980). Dexametha-
sone has been well known to lead prompt remission
in acute lymphoblastic leukemia (Chabner et al, 1996).

Polyamines are essential for cell growth, prolifera-
tion, and differentiation (Tabor & Tabor, 1984; Pegg,
1986; Heby & Persson, 1990), and so have some roles
in apoptosis (Brooks, 1995). Polyamines, particularly
spermine, have been reported to show the inhibitory
effect on the apoptosis induced by dexamethasone
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(LaVoie & Witorsch, 1995), Ca”* ionophore (Brune
et al, 1991), and topoisomerase inhibitors (Solary et
al, 1996; 1994; Bertrand et al, 1993) in thymocytes
and lymphocytes of leukemia and lymphoma.

On the contrary, several reports demonstrated that
excessive polyamine accumulation might induce
apoptotic cell death (Pegg et al, 1995; Poulin et al,
1995), and that a stable polyamine analogue also
induced both growth inhibition and apoptosis of
cancer cells (McCloskey et al, 1995). And in the
mouse myeloma cells to overexpress ornithine decar-
boxylase (ODC), the addition of ornithine to the cul-
ture medium increased cellulr putrescine content, re-
sulting in apoptotic cell death (Tobias & Kahana,
1995).

In the early phase of the rat thymocyte apoptosis
induced by glucocorticoid, heat shock, and y-irra-
diation, an increased expression of ODC gene appears
with the decrease of cellular polyamine contents,
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before laddering of genomic DNA (Desiderio et al,
1995; Grassilli et al, 1995).

The cellular levels of polyamines are regulated by
the activities of polyamine transporters (Pegg, 1988;
Lessard et al, 1995) as well as by the activities of
synthetic enzymes, ODC and S-adenosylmethionine
decarboxylase (SAM-DC), spermidine/spermine N-
acetyltransferase, and oxidases (Pegg, 1988; Seiler,
1987; Casero & Pegg, 1993).

This study was carried out to investigate the role
of polyamines in the dexamethasone-induced apop-
totic cell death of CCRF-CEM cells, a human T lym-
phoblastic leukemia cell line (Foley et al, 1965) which
has been considered to be labile to dexamethasone
cytotoxicity (Norman & Thompson, 1977; Yuh &
Thompson, 1989), referring the effect of the poly-
amine depletion by DL- ¢-difluoromethylornithine
(DFMO) (Mamont et al, 1978).

METHODS

Cell culture and drug trearment

CEM cells (ATCC CCL 119) were cultured in
RPMI 1640 medium (Gibco) containing 10% fetal
bovine serum (Gibco) under humidified atmosphere
of 5% CO, at 37°C. Two hours after beginning of
cell culture (seeding density of 2+0.2 X 10° cells/
ml), DFMO (1x10° M; control, PBS 0.1% v/v of
medium; Marion Merrell Dow) or dexamethasone (1
x 10° M; control, ethanol 0.1%) was added to the
culture medium, and the polyamine contents and
putrescine uptake activity of CEM cells ‘were mea-
sured. And 2 hours, 14 hours, and 16 hours after
beginning of cell culture, DFMO, putrescine (1 x 107
M; control, PBS 0.1%), and dexamethasone - were
respectively added to the culture medium, and then
the studies of MTT assay, LDH release, DNA frag-
mentation, cell cycle analysis, and phosphorylation of
Rb protein were performed with 24 hour intervals or
at 72 hour after dexamethasone treatment.

Measurement of cellular polyamine contents

The CEM cells of (2402 X 10°% were washed
twice with PBS. The washed pellet was extracted
with 200zl of 0.6 M perchloric acid at 4°C for 30
min and then centrifuged at 12000 X g for 5 min. The
supernatant of 100 y] was evaporated to dryness. For

derivatization of polyamines, the dry residue dis-
solved in 100 gl of 1 M sodium carbonate was
mixed with 300 yl of FNBT reagent (1% 4-fluoro-
3-nitrobenzotrifluoride solution in DMSQ; Aldrich)
and incubated at 60°C for 20 min. At the end of the
reaction, 40 1 of 1 M histidine in 1 M sodium car-
bonate was added to the solution, and the reaction
was continued for further 5 min. After cooling the
reaction mixture, the polyamine derivatives extracted
twice with 2 ml of 2-methylbutane (Aldrich) were
dried and dissolved in methanol. The methanol solu-
tion was applied on an ODS reverse phase column
of HPLC, which was eluted by an isocratic mobile
phase of 80% acetonitrile, monitoring at 242 nm
(Spragg & Hutchings, 1983).

[“C]Putrescine uptake measurement

The CEM cells (1£0.1 X 106/1111) were resuspended
in PBS and then incubated with 1 ¢M~20 uM of
[*Clputrescine (Amersham) at 37°C for 60 min under
5% CO, atmosphere. At the end of incubation, cold
PBS of 1 ml containing 1 mM putrescine was added
to the cell suspension and centrifuged at 2000 X g for

5 min. The pellet was washed twice with PBS and
dissolved in 200 sl of 1 N NaOH at 60°C for 60
min. The solution was neutralized with 200 gzl of 1
N HC], and the radioactivity was measured by 3-
scintillation counter (Porter et al, 1985; Lessard et al,
1995). The uptake parameters were determined by
Edie-Scatchard plot.

MTT assay

The culture medium (100 1) containing suspended
CEM cells was incubated with 10 gl of MTT
labeling reagent (3-[4,5-dimethylthiazol-2-y1]-2,5-di-
phenyl tetrazolium bromide (MTT), 5 mg/ml in PBS;
Boehringer Mannheim), at 37°C for 4 hours. And the
formazan crystal produced by cellular dehydrogenases
was resolved in 100 rd of solubilizing solution (10%
SDS in 0.01 M HCIl; Boehringer Mannheim) at 37°C
for 12 hours, and then the absorbance was measured
at 600 nm (Mosmann, 1983).

LDH release assay

The supernatant (50 #1) of culture medium was re-
acted with 50 1 of LDH substrate solution (Promega)
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for 30 min, and the reaction was stopped by addition
of 50 pl of 1 M acetic acid. The activity of LDH
released was measured as the absorbance at 492 nm

(Korzeniewski & Callewaert, 1983; Decker & Lohmann-
Matthes, 1988).

DNA fragmentation assay

The CEM cells (2+0.2 X 10° washed with PBS
were digested in 100 gl of lysis buffer (20 mM
EDTA, 100 mM Tris, pH 8.0, and 0.8% sodium
lauryl sarcosine) and 50 gl of RNase A (1 mg/ml)
at 37°C for 90 min, and then incubated overnight with
50 ul of proteinase K (20 mg/ml) at 50°C. The geno-
mic DNA was extracted once with phenol- chloro-
form-isoamylalcohol (25:24:1) and twice with chloro-
form-isoamylalcohol (24:1). DNA was precipitated by
adding ammonium acetate upto 2.5 M and absolute
ethanol. Being incubated for more than 2 hours at
4°C, the DNA was pelleted by centrifugation 12000
X g for 15 min and washed with 70% ethanol. The
DNA pellet was dried and dissolved in TE buffer (pH
8.0), and the fragmented DNA of 10 ug was sepa-
rated on a 2% agarose gel, which was stained with
ethidium bromide and visualized under UV light.

Flow cytometric analysis. of cell cycle

The PBS-washed CEM cells (1:£0.1 X 10%) were
fixed in 2 ml of cold 70% ethanol at 4°C for 60 min,
and then washed with PBS and resuspended in 0.5
ml of PBS. To this cell suspension, 0.5 ml of RNase
(1 mg/ml in PBS) and 1 ml of propidium iodide (100
#g/ml in PBS) were added. And the cellular dis-
tributions to Gi, S, and G,/M phases were analyzed
by a flow cytometer (Nicoletti et al, 1991).

Western blot analysis of phosphorylated Rb protein

The CEM cells (6+0.2 X 10° washed with PBS
were lysed in SDS-PAGE sample buffer containing
dithiotreitol, and boiled for 5 min. The protein con-
tent of PBS-washed cells was measured by Bradford’s
method (1976). Each lysate was electrophoresed on
a 7.5% SDS-PAGE gel and transferred into PVDF
membrane. Rb immunoblot was probed using the
anti-human Rb monoclonal Ab (Pharmingen), and
detected with ECL-blotting system containing HRP-
labelled secondary Ab of mouse Ig (Amersham).

RESULTS

Effects of DFMO and dexamethasone on the poly-
amine metabolism in CEM cells

The change of polyamine contents was measured
after DFMO and dexamethasone treatment to evaluate
the time-dependent change of polyamine metabolism
by DFMO or dexamethasone in CEM cells (Fig. 1).
Putrescine content was almost depleted to less than
2% of control after 8 hours of DFMO treatment, and
by dexamethasone, it was significantly decreased to
about 50% of control at 8 hour and nearly depleted
to that by DFMO after 24 hours. Spermidine content
was almost depleted after 24 hours of DFMO
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Fig. 1. Effects of DFMO (10 > M) and dexamethasone

(DX: 107° M) on the polyamine contents of CEM cells.

(O: Control, @: DFMO, I: DX

Each point represents mean*S.E. of 4 independent

measurements.

+and ‘- indicate p<0.1 and p<0.05, in comparison to
the control group.
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Table 1. Effects of DFMO and dexamethasone on the [“Clputrescine uptake of CEM cells
Treatment Km (uM) Vmax (nM/hr/mg protein)
Control 22.42+2.30 2.14+0.19
DFMO 12 hr 8.31 1 1.21%* 7.69 £0.81%*
DFMO 24 hr 6.85 +0.89** 1524 +£1.17%*
DFMO 48 hr 6.961+0.75*%* 27.931£2.13%*
DFMO 72 hr 7.05+£0.79%* 1.53 £ 1.96**
DX 24 hr 17.16+1.94 1.12+0.21**
DX 48 hr 18.3111.95 1.20£0.29*%*
DX 72 hr 17.20+1.87 1.14 £0.27**
DFMO 36 hr & DX 24 hr 9.48+0.86 16.98 +1.71**
DFMO 60 hr & DX 48 hr 2.15+1.02*%* 9.71+0.89**
DFMO 84 hr & DX 72 hr 12.61 £0.93** 9.29+1.32**
** indicates p<0.05
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Fig. 2. Effects of DFMO and putrescine (PU, 107> M) on the change of CEM cell

count by dexamethasone.

** indicates p<0.05, in comparison to the control count at 72 hour.

treatment, and by dexamethasone, it was decreased to
less than 80% of control after 24 hours. Finally,
spermine content was not affected by DFMO, and by
dexamethasone, the decrease of spermine content was
continued till 72 hour after treatmemt.

CEM cells showed Km and Vmax of putrescine
uptake as follows; 22.4+2.3 xM and 2.14+0.19
nM/hour/mg protein, respectively (Table 1). DFMO
significantly decreased the Km at 12, 24, 48, and 72

hour, and significantly increased the Vmax at 12 hour
and further increased that after 24 hours. But dexa-
methasone slightly decreased the Km at 24, 48, and
72 hour, and significantly decreased the Vmax.
DFMO, treated at 12 hour prior to dexamethasone,
enhanced the slight decrease of Km by dexame-
thasone, and reversed the decrease of Vmax by
dexamethasone.
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Effects of DFMO and putrescine on the inhibition of
cellular proliferation by dexamethasone

Cell counting and MTT assay were performed to
evaluate the effects of DFMO and putrescine on the
change of cellular proliferation by dexamethasone
(Fig. 2 & 3).

The cell count and the MTT value of CEM cells
increased for 4 days, and this increase was signifi-
cantly inhibited by dexamethasone. DFMO also sig-
nificantly inhibited the increase of cell count and
MTT value, and enhanced the inhibitory effects of
dexamethasone. Otherwise, putrescine had little effect
on the increase of cell count and MTT value of CEM
cells, and little affected the inhibitory effect of dexa-
methasone on the cell count and MTT value. But
putrescine almost reversed the inhibitory effect on the
cell count and MTT value by DFMO, and also
reversed the enhancement of dexamethasone effects
by DFMO. The MTT value of culture well may re-
present the count of viable cells in the well, and the

—O— Control
—& PU
~@- DX
PU & DX
60071 .o oMo
& OFMO&PU ?
500 A @ DFMO & DX -
& DFMO & PU DX
-3
& 400 {
: s 2
3 300 1 ,,,,,,,
£ YN
g P e e
a 200 4 &5
< | T e
100 -
0
w 50“
3
“@ 40 A
[=)
-~
= 30
g
8 20
[ =4
2
5 10
[72]
2
< g
° 2 48 72 96 120
Hours

Fig. 3. Effects of DFMO and putrescine on the change
of MTT value of CEM cells by dexamethasone.

absorbance per viable cell, which declined slowly,
was affected by neither dexamethasone nor DFMO
(Fig. 3-lower).

Effects of DFMO and putrescine on the apoptotic cell
death by dexamethasone

LDH release and DNA fragmentation were mea-
sured to examine the effects of DFMO and putrescine
on the apoptotic cell death induced by dexamethasone
(Fig. 4 & 5).

The LDH release from CEM cells and the frag-
mentation of DNA appeared not to be significant for
72 hours, but dexamethasone significantly increased
LDH release after 48 hours and induced evident
fragmentation of DNA at 72 hour. DFMO had little
effect on LDH release and induced little fragmen-
tation of DNA. But DFMO significantly enhanced the
increase of LDH release by dexamethasone (Fig. 4-
lower), and also enhanced the DNA fragmentation by
dexamethasone. Putrescine had little effect on the
LDH release and DNA fragmentation of CEM cells,
and little affected the increase of LDH release and
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Fig. 4. Effects of DFMO and putrescine on the increase
of LDH release from CEM cells by dexamethasone.
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Fig. 5. Effects of DFMO and putrescine on the change
of DNA fragmentation at 72 hour after dexamethasone
treatment.

lane L: Authentic marker of 123 bp DNA ladder,

lane 1: Control, lane 2: PU,

lane 3: DX, lane 4: PU & DX,

lane 5: DFMO, lane 6: DFMO & PU,

lane 7: DFMO & DX, lane 8: DFMO & PU & DX

DNA fragmentation by dexamethasone. But putres-
cine almost reversed the enhancement of dexame-
thasone-induced LDH release (Fig. 4-lower) and
DNA fragmentation by DFMO.

Effects of DFMO and putrescine on change of cell
cycle by dexamethasone

Cell cycle profile was analyzed to assess the ef-
fects of DFMO and putrescine on the cell cycle arrest
by dexamethasone and to elucidate the relation between
the cell cycle arrest and subsequent development of
apoptosis.

Cell cycle distributions of CEM cells were as fol-
lows; 36.6+1.5% in G), 48.1+1.9% in S, and 15.4
+1.2% in G»/M phase at 72 hour, and dexametha-
sone significantly increased the cellular distribution in
G, phase and reciprocally decreased the distribution
in S phase, with persistent percentage in G»/M phase.
DFMO also increased the ratio of cellular distribution
in Gy phase to the distribution in S phase, with no
change in G:/M phase, and DFMO enhanced the
Gi-arrest by dexamethasone. Putrescine little affected
the cell cycle progression as well as the Gj-arrest by
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Fig. 6. Effects of DFMO and putrescine on the change
of cell cycle distribution of CEM cells by dexametha-
sone.

Table 2. Effects of dexamethasone, DFMO, and putres-
cine on the ratio of G; to S phase distribution of CEM
cells

Treatment (—) Putrescine (+) Putrescine
Control 0.77 £0.06 0.83+0.08
DX 2.75+0.20%* 2.37+0.25
DFMO 1.42+0.11*%* 0.89+0.09"

DFMO & DX 4.41+0.56** 239402377

** indicates p<(0.05 in comparison to the control, and
"7 indicates p <0.05 in comparison to the (—) putres-
cine.

dexamethasone, but it almost reversed the Gi-arrest
by DFMO and also reversed the enhancement of
dexamethasone-induced Gi-arrest by DFMO (Fig. 6
& Table 2). |

Effects of DFMO and putrescine on the change of
DRb phosphorylation by dexamethasone

The phosphorylation of pRb has been known to
closely relate to the cell cycle progression through G;
phase, and we analyzed the phosphorylation status of
pRb to explain aspects of the effects of DFMO and
putrescine on Gj-arrest induced by dexamethasone.

The pRb of CEM cells was highly phosphorylated
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< ppRb
< "PRb

Fig. 7. Effects of DFMO and putrescine on the change of Rb protein phosphorylation at

72 hour after dexamethasone treatment.

lane 1: Control, lane 2: PU,
lane 3: DX, lane 4: PU & DX,
lane 5: DFMO, lane 6: DFMO & PU,

lane 7: DFMO & DX,

with normal cell cycle progression, and dexametha-
sone hypophosphorylated pRb at 72 hour of treatment
(Fig. 7). DFMO also inhibited the phosphorylation,
and enhanced the hypophosphorylation of pRb by
dexamethasone to display an evident band of hypo-
phosphorylated. Putrescine had little effect on the
normal hyperphosphorylation and dexamethasone-
induced hypophosphorylation, but putrescine reversed
the hypophosphorylation of pRb by DFMO and also
reversed the enhancement of dexamethasone-induced
hypophosphorylation by DFMO.

DISCUSSION

The ODC and polyamines have been known to
involve in dexamethason-induced apoptosis of thymo-
cytes (Desiderio et al, 1995; Grassilli et al, 1995),
and the apoptosis was significantly inhibited by
addition of polyamines to the culture medium (Brune
et al, 1991).

In this study, DFMO almost depleted cellular
putrescine and spermidine but little affected spermine
content of CEM cells. Dexamethasone produced acute
depletion of cellular putrescine, followed by gradual
decrease of spermidine and spermine contents. DFMO
enhanced the putrescine uptake activity within 12
hours of treatment, but dexamethasone depressed the
Vmax of putrescine uptake althouth the putrescine
content was almost depleted. Though the polyamine
transporters have been known to be upregulated by
the decrease of cellular polyamine contents (Grillo et
al, 1989), little resource of polyamines in culture
medium made the transporters to be useless and then
the putrescine and spermidine contents remained to

lane 8: DFMO & PU & DX

be depleted in DFMO-treated CEM cells. However,
the spermine content was little changed by DFMO in
this study, and this result seemed to be related to
previous studies which showed the different respon-
sivenesses of the cellular spermine contents to DFMO
in different cell lines (Pera et al, 1986; Dorhout et
al, 1995; Walters & Wojcik, 1994).

The dexamethasone-induced acute depletion of
cellular putrescine and the following decrease of
higher polyamine contents in this study might be as-
sociated with the reduction of ODC activity in CEM
cells. Also, ODC expression was inhibited in the TGF
Bi-induced apoptosis of L1210 cells (Grzelkowska et
al, 1995). But several reports opposed above sugges-
tion; the early expression and increase in activity of
ODC associated with the decrease of polyamine
contents were preceded to the appearance of DNA
laddering in dexamethasone-induced apoptosis of thy-
mocytes (Desiderio et al, 1995; Grassilli et al, 1995),
and the c-Myc-induced apoptosis was associated with
the expression and activation of ODC (Packham &
Cleveland, 1994; 1995; Packham et al, 1996). Never-
theless, there are several evidences that the decrease
of cellular ployamine contents is one of the char-
acteristic features of dexamethasone-induced apopto-
sis (Desiderio et al, 1995; Grassilli et al, 1995). There
may be putative contributors to decrease polyamine
contents in the process of apoptosis, besides the changes
of activities of the synthetic enzymes (Desiderio et al,
1995); reduced cellular availibility of ornithine and
arginine as substrates, oxidative metabolism by dia-
mine and polyamine oxidases (Buttke & Sandstrom,
1994), increased acetylation facilitating the excretion
of polyamines (Casero & Pegg, 1993), activation of
transglutaminase (Piacentini et al, 1991; Martin et al,
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1994) which can use polyamines as substrates (Fesus
et al, 1991).

The increase of putrescine uptake activity by
DFMO was in accordance with the other studies
using leukemia and other cell lines (Kramer et al,
1993; Byers & Pegg, 1989; Walters & Wojcik, 1994),
and the decrease of putrescine uptake activity can be
considered to be one feature in dexamethasone-
induced apoptotic cell death. However it is remained
to be clarified wheather the decreases of polyamine
contents and putrescine uptake activity are primary or
secondary to the apoptosis induced by dexamethasone.

CEM cells continued to proliferate for 4 days with-
out refresh of culture medium and showed slight
decline of cellular activity in MTT assay after 24
hours. Both of DFMO and dexamethasone inhibited
the proliferation of CEM cells, and dexamethasone
increased LDH release from the cells and fragmen-
tation of DNA, which were enhanced by DFMO. In
addition, exogenous putrescine reversed the enhance-
ment of dexamethasone-induced actions by DFMO as
well as the antiproliferative action of DFMO. These
results seemed to be in accordance with the previous
studies, in which exogenous putrescine reversed the
DFMO-induced suppression of DNA synthesis in
lymphocytes and leukemic cells (Seyfried & Morris,
1979; Gallo et al, 1986; Endo et al, 1988). And these
findings showed that DFMO produced antiprolifer-
ative effect on CEM cells without cell damages, and
the antiproliferative action was exclusively dependent
on the depletion of cellular polyamines and predis-
posed to the enhancement of apoptotic cell death
induced by dexamethasone.

G//S transition is the critical point in cell cycle and
is one of the steps to be regulated in apoptosis, and
the hyperphosphorylation of pRb is appeared in G,/S
transition of cell cycle (Chiarugi et al, 1994; Kranenburg
et al, 1995). ODC activity is strictly regulated during
cell cycle, showing the highest peak in G; phase, and
so polyamines have been known to be essential in
cell cycle progression (Heby & Persson, 1990; Stimac
& Morris, 1987; Kaminska et al, 1990). DFMO ar-
rested the cell cycle at G; phase, and the Gj-arrest
was definitely associated with DFMO-induced decrease
of putrescine and spermidine contents in 1.1210 cells
(Dorhout et al, 1995). Similarly in IL-3 dependent
myeloid cells, the G-arrest induced by IL-3 depri-
vation also appeared to involve in the down-regula-
tion of ODC and c-myc expression (Askew et al,

1991). In this study, the antiproliferative action of
DFMO and the apoptotic action of dexamethasone
described above appeared to be associated with the
hypophosphorylation of pRb representing arrest of
cell cycle in G; phase. The mechanism of hypophos-
phorylation of pRb induced by depletion of cellular
polyamines is under study.

In conclusion, dexamethasone-induced apoptosis
seems to be ascribed to cellular polyamine depletion
associated with the inhibition of Gy/S transition.
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