Effect of pH on the ATP-sensitive $K^+$ Channel in Aortic Smooth Muscle Cells from Rats

  • Kim, Se-Hoon (Department of Physiology, College of Medicine, Chungnam National University) ;
  • Kim, Il-Su (Department of Physiology, College of Medicine, Chungnam National University) ;
  • Kim, Hoe-Suk (Department of Physiology, College of Medicine, Chungnam National University) ;
  • Jeon, Byeong-Hwa (Department of Physiology, College of Medicine, Chungnam National University) ;
  • Chang, Seok-Jong (Department of Physiology, College of Medicine, Chungnam National University)
  • Published : 1997.10.21

Abstract

The effects of pH on $K^+$ currents were investigated in single smooth muscle cells isolated from the thoracic aorta of Wistar-Kyoto rats. Whole-cell $K^+$ currents were recorded in the conventional configuration of the voltage-clamp technique. Pinacidil (10uM) activated the whole-cell current and the pinacidil-activated current was completely inhibited by glibenclamide (10uM) , an inhibitor of ATP-sensitive $K^+$ channel ($K_{ATP}$ channel). Pinacidil-activated current was reversed at near the $K^+$ equilibrium potential. This current was time- and voltage-independent and reduced by elevating intracellular ATP. Pinacidil-activated current was reduced by lowering the external pH. However, alteration of internal pH has controversial effects on pinacidil-activated current. When the single cell was dialyzed with 0.1 mM ATP, alteration of internal pH had no effect on pinacidil-activated $K^+$ current. In the contrast, when the single cell was dialyzed with 3 mM ATP, pinacidil-activated current was increased by lowering internal pH. Our results suggest that $K^+$ channel activated by pinacidil may be $K_{ATP}$ channel and internal $H^+$ may reduce the inhibitory effect of ATP on $K_{ATP}$ channel.

Keywords