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Performance Analysis of Satellite Maneuver and
Structure Control Using Risk—Sensitive Control
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I . Introduction
The Risk-Sensitive (RS) control strategies are a
generalization of the LQG control strategy, and are related
to the dynamic games and the H. control methods. This

RS idea seems to be originated from Jacobson in 1973 [11.
Finite horizon linear exponential-of-integral solution (EQI)
of the full-state-feedback case has been solved by
Jacobson. In 1985 Bensoussan and van Schuppen solved the
partially observable RS control problem [2]. In 1991 Whittle
introduced the RS maximum principle in [3]. RS control has
been shown to be related to H. control through entropy

[4]. Furthermore, the relationship among H.. optimal con-

trol, game theory, and risk—sensitive stochastic control have
been established in recent years [5]. Runolfsson has solved
the infinite horizon RS case, however just for the
risk-aversive choice {5]. The probabilistic performance and
stability characteristics of RS controlled structures have
been studied using reliability analysis in [6].

This paper recognizes RS control as a generalization of
LQG control. RS control is an extension of classical LQG
control in the sense that there exists an extra variable
parameter, Vrs, and setting this parameter to a particular
value recovers the LQG result. The average value
derivation of cost function to determine the performance is
given as a proposition.

This proposition differs from the LQG derivation by the
extra term with the risk-sensitivity parameter, Vrs, and as
Vrs approaches infinity we recover the LQG result. Thus, by
varying this Vgs, we achieve different performance and
stability results. Here, we also propose a method to choose
the risk sensitivity parameter in order to achieve better
stability margin.

In the satellite and structure control applications the
performance is calculated, and the tradeoff between the
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stability and the average performance is shown. In the next
section, full-state feedback RS control of Jacobson is
discussed. In Section III, the average performance of an RS
controller is derived. Then in Sections IV and V, the
applications of RS control are given. First application is for
satellite attitude/orbit maneuver and the other is in
structural control under seismic disturbances. Finally,
conclusions are given in the last section.

II. Full state feedback risk—sensitive control

In his paper “Optimal Stochastic Linear Systems with
Exponential Performance Criteria and Their Relationship to
Deterministic Differential Games,” Jacobson defines and
solves the linear exponential quadratic Gaussian control
problem [1]. In this setting the LQG method is extended by
replacing the quadratic criterion with the exponential of a
quadratic function. Then the solution shows that the
controller depends on the statistics of the noise. The system
considered in the paper is given in the equation

x(8)= A()x(8) + B(Du(H + A(uld). )

The problem is to minimize the equation

J= 6¢E{ exp (%’é fotp[ 2 (DD +u (DRu(H))dt+ % (e Px( tp))}
(2)

with respect to #(-) and subject to (1), where w(d is a
Gaussian white process with E{w(H}=0 and E{w(Hw’
(D} = W t—1). Here ¢ denotes a sign operator which is
equal to -1 for the risk seeking case and +1 for the risk
aversive case, and ¢ denotes a real scalar parameter.
Assuming perfect state observation, the solutions are
derived using the Hamilton-Jacobi-Bellman equation

— A d . min (( A1) Y (A(pe+ BlHW

u
+ e A(t)_WA'(t)ii%ﬂ%Jl)-F%é(x'Qx+u'Ru)]"(x, ).
3
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Take derivative of both sides with respect to # to get
R B(?) _a.lia(L_tl
X

If we assume an optimal cost of the form
J'=0¢F (D exp(lzqﬂ‘ M ”x) 5)

and substitute the above equations into the Hamil-
ton-Jacobi-Bellman (2), we get two differential equations
similar to the results in the last section, namely

- M(D= Q-M%D(B(HR'B (¥
—agA(H) WA ()M (1) ©
+MDA)+ A (DM (D)

- F(= %QF"tr[E(t)WE'(t)M”(t)]

with the boundary conditions M(¢tr)=P and F(tr)=1.
Finally, then, the minimum cost is

minJ °(x,0) = o4F “(0) exp( % ¥ (M=) @

1. Average performance of an RS controller
In LQG control, we are minimizing the average value of the

cost function, 7T (¢#r), which is closely related to the

minimization of the covariance of the state, x. In RS control
this average value of the cost function and the covariance
of the state can be varied by choosing the appropriate
risk—-sensitivity parameter, Vgs.

Consider the system described by the stochastic differential
equation,

dx(D) = (Ax(H +Bu(D))dt+ Adu D), x(0)=x, (8

where w is a Brownian motion, x()=R" is the state, and
u(HeR™ is the control action.
Assume the following:

E{w) =0, E{du(ddw ()= W dt, ©
B(0) =0, B0 (0} =3,

Furthermore assume that w and x(0) are mutually
independent. The cost function that_ is to be minimized is
given by

Tes(D= 1og(E{ exp(ﬁ T(m)]) (10)

where

T(t9) = [, 15 (9Qe() +4 (DRu(Dlat, (11

@20, and R>0. Then the state feedback optimal controller
is found to be [5]

u(t) = Kx())=—R B S(Dx(H =— K(Dx(?) (12)
where S(# is obtained from

S (D+A'S(H+S(DA+Q (13)
- t)(BR“B’ - —le-s AWA')S(t) =9.

Now we are ready to present the average performance
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result which is an extension of the classical LQG case. The
average performance results of the LQG case are well
known in the literature, see [7] for example, but here we
derive the result for the RS control case. Note that there
exists an extra term with y gs in (16). This is an extension

of the LQG case in the sense that the extra term disappears
as Vgs approaches infinity, and (16) reduces to the classical
LQG equation.

Proposition 1 : For a full-state-feedback RS control with
the above assumptions, the covariance of the state,
E{x()x' (D} =209, is given by

2 (D= (A—BR'BS())I(D (14)
+3(O(A—~BR'BS(H) +AWA’,

with 3(0)=2; the covariance of the control force is
obtained from

Elu(Du’ (D) =R 'BS(HXDHS(HBR ™}, (15)

and the average value of the cost function, J¢p) is given
by

ET ()= u[s0z0+ [ soam g
——L s(yams(ns t))dt].
Y RS

Proof : The covariance of the state (7) is derived in a
standard way; see [7] for example. And (8) is a direct
consequence of (5). To get the average value of the cost
function, take the trace of (4) and obtain

E{ T )
tp
=E{ tr( [ 1% (9D +4 (DRu(D] dt)} an

- tr(fotF[Z'(t)Q+RK2(t)K'] a).

Add the differential, “57(53 into the integrand of (9),

compensating by adding S(0)3(0) —S(¢)2(¢r) outside the
integral to obtain,

E(T(tp)= tr(SO0)20)—S(¢ A3t )+ 18)
tr(fo TXDQ+RESDK + § XD +S 3 (t)]dt).

Now use (6) and (7), then simplify to get

E{ f(tF)}= tr (S(0)2(0) 19)
+f F[S(t)AW/l'—Tle-S(t)AWA’S(t)E(t)] .

Thus, we note that by varying the risk-sensitivity
parameter, ¥ gs, we can change the average performance.
As 7 gs approaches o we get the classical linear quadratic
Gaussian (LQG) average performance.

IV. Satellite applications of an RS controller
As the applications, satellite attitude and orbit maneuvers
are considered here. Firstly, the attitude of a geostationary
satellite such as the KOREASAT and Experimental
Communication Satellite (ECS) of ETRI is modeled and
controlled using the RS controller. Then RS attitude and
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orbit maneuver of a satellite are considered as applications.
The purpose of these examples is to show the applicability
of RS control in spacecraft maneuver, and to compare RS
control with existing LQG control. In the orbit control
application, we apply the performance analysis method
discussed in Section IIL

1. Attitude maneuver application

This section shows the simulation results associated with
the model of a geostationary satellite equipped with a bias
momentum wheel on the third axis of body frame. This
model assumes that the disturbance torque is Gaussian
white noise. Then a stochastic RS controller is applied. For
this model we assume small attitude angle, and roll/yaw
dynamics are assumed to be decoupled from the pitch
dynamics.

A roll/yaw attitude model of the geostationary satellite such
as the KOREASAT and the ECS is simplified [8] as the
following linear differential equation when £,> max{/;, .},

0 0 1 0
ap=| P, 0 0L hya o
A 0 0 7
_ hue By
0 5 A 0
0 0
+1 5 0 |md ar+ ? du{d)
112 cos(8) A
B, . 1
7, sin( 6) I,
() = I,y x() dt + dv(¥) (21)
where % is white Gaussian noise representing the dis-

turbance torque, —‘é% is white Gaussian noise representing

the measurement noise, 4, is the wheel momentum, & is
the angle that the positive roll axis makes with the
magnetic torquer, o, is the orbital rate, I; is the moment
of inertia of the i~th axis, x=[yaw, roll, yaw, roll] is the
state, m is a dipole moment of the magnetic torquer
(control), B,=1.07x10 77 telsa is the nomial magnetic field
strength, and 7,., is an identity matrix with dimension
W s zero with

dt
E{—d&ﬂ}=0.7Be, and the expected value of —‘é—’; is

dt dt
. v dv.
zero with E{ dt " df

5x10 % for the demonstration purpose, but this risk-
sensitivity parameter, y gs, should be viewed as another
design parameter just like the weighting matrices Q and R.
By varying this 7ygs, we can obtain different performance
and stability results. Theoretically, all 7zs that give a
solution to the Riccati (13) are possible. In the next
example, we show how we choose this risk-sensitivity
parameter to obtain larger stability margin. The constants
for the operational mode are given as

four., The expected value of

}=1><10 ~". Here we chose 7gs=

I,-1988kg - m?, I, = 1876kg - m*, h,,= 55 kg - m*/s,

w.=0.00418 deg /s, and = 60deg .

These values are actual parameters of the geostationary
satellite, ECS-1.
The initial condition is [0.5deg,0,0,0.007deg/s]. Finally
the weighting matrices are chosen to be @=1,. and
R=1x107",

In this model, the states are measured with the sensor

noise, —Z,’l% Then a Kalman filter is used to estimate the st-

ates. The following simulations are performed using
MATILAB, a software package. Figure 1 shows the phase
plot of RS controlled ECS-1. The RS controller is found
using (12). Note that both yaw and roll angles reduce to a
value close to the origin. The second graph, Figure 2 shows
the roll and yaw angles with respect to time variation. After
about 3 hours, both roll and yaw angles stay below 0.1
degree. Figure 3 shows the control action needed to control
the satellite. Initially large control action is needed, but after
3 hours or so, less than 300 A#m® magnetic torque is
required. It is important to note that despite the external
disturbances, RS control law produces good performance.

To compare the results with well known LQG controller, we
simulated the system with an LQG controller. Here we let
yrs approach infinity in (13). Note that (13) becomes

classical Riccati equation as y gs goes to infinity. This is

shown in Figure 4. Note that in LQG case, it takes longer
for yaw and roll angles to fall below 0.1 degree, and the
variation in the angles are larger than the RS case. Thus in
this sense, RS controller outperforms the LQG controller.

0.28

0.2

ol deg)

L L 1
o1 0 G 02 03 04 05
yaw (deg)

Fig. 1. Roll/yaw phase plot, RS control.

roll and yaw (deg)

Time (hours)

Fig. 2. Roll/yaw versus time, RS control.
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Fig. 3. Control action, RS control.

2. Orbit maneuver application

To show the possible use of RS control in space
technology application, we ran a computer simulation of the
orbital maneuver of a satellite. Due to the nature of the
application and large experimental costs involved, actual
experiment is not yet performed. But it is possible to do an
experiment using the satellite simulator to be developed in
ETRI by 1999 [9].

]
£,
g

Time (hours)

Fig. 4. Roll/yaw versus time, LQG.

A linear perturbation model of a satellite in orbit about a
planet with an ideal inverse-square gravity field is given by
(see [10])

00 1 0
et~ 3?228 8 21%09 A (22)
0 0 -—2—% 0
0 0 0
+ (1) 8 uld) + ‘1) ()
0 % 1

where x=[r 8 » §1,rand § describe the position and

the angle of the satellite in the polar coordinate. The control,

u, represents the acceleration due to thrust. The constant

R,=7063km is the orbit radius, # is the gravitational

constant, angular rate, .Q=1/ —Ra‘”— =1.064 x10 ~*rad/s, and
0

w() is the

white noise with zero mean and
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Elw(dw (D)= &¢~1). Here w(® is perturbation in the
space which accounts for modeling inaccuracies such as the
oblateness of the Earth, incomplete knowledge of the
atmosphere, aerodynamic forces, spherical symmetry, and
rotational forces. The weighting matrices are taken to be
and @=1,,, R=1. Once again, these values are chosen by
trial and error method. The terminal time # is taken to be
10 seconds. Here we assume that the all the state are
known, If the states are not known then we can use a
Kalman filter to estimate the states as in the previous
example.

Fig. 5. Full-state-feedback;
variance.

optimal

' ; H i ; . i
o8 0.8 1 1.1 1.2 13 14 1.5
gamma x 10"

Fig. 6. Full-state-feedback;
theta,

Fig. 7. Full-state-feedback;
theta_dot.

RMS rdot and



223 Journal of Control, Automation and Systems Engineering, Vol. 3, No. 3, June, 1997

Figure 5 shows the graphs of the optimal mean and
variance with respect to 7y gs. Note that both mean and
variance decrease as 7 gs increases. The mean and the
variance of the cost function is related to the energy of the
system. Thus, smaller mean and variance correspond to
saving valuable fuel of the satellite, and are preferred. Since
the RMS value(square root of the covariance) has more
intuitive meaning than the covariance, we present the
results in terms of the RMS values. Figures 6 and 7, which
are calculated using (14), show that all four RMS values of
the states increase as ygs increases. Thus to reduces the

RMS values of » and 8 smaller ygs is preferred. The
RMS values are calculated using the results of Proposition
1. Because large 7 gs corresponds to LQG performance
value, we note that RS control gives better performance in
terms of the RMS values of the state. Figure 8 shows the
control actions required. These RMS values are one way to
measure performance of the controller. Smaller RMS values
imply more precise satellite maneuver. Thus, there is a
tradeoff between the amount of fuel used and the precision
of the maneuver.

When the state x is measured, the RS controller are
implemented in the manner x=—Kx for an appropriate
matrix K of feedback A ;= A —BK gain, which leads to a
closed loop matrix, . Since the asymptotic stability of a
system depends upon its eigenvalues of A , the system is
stable if all the eigenvalues are in the open left half plane.
Furthermore if the maximum real part of the eigenvalues
are farther away from the imaginary axis, we say the
system has more stability margin.

Figure 9 shows the change of maximum real part of the
eigenvalue with respect to ¥ gs. Since smaller maximum
real part of the eigenvalue corresponds to more stability
margin, the best margin occurs when 7gzs is around

1.024x10*. The variation in the maximum real part of the
eigenvalue is not monotonic, thus it is necessary to obtain
these simulation results in order to choose appropriate 7 gs
value. It is important to note that RS control gives an extra
degree of freedom in choosing this stability margin through
7 rs. For the classical LQG case, the maximum real part of
the eigenvalue would be fixed around -0.01, and for the RS
case the maximum real part of the eigenvalues could be in
the range of -0.014 to -0.0065 depending on the risk
sensitivity parameter. There exists tradeoff with the
stability and performance, so these graphs will help in the
engineering decision process.

V. RS control of a structure under the earthquake

As another application area of RS control, we propose
structural control under seismic disturbances. Using active
structure control in the civil engineering application is an
actively researched area; see [6] and [11] for example. Here
we consider a 3DOF, single-bay structure model with an
active tendon controller as shown in Figure 10; see [11].
The structure is subject to an one-dimensional earthquake
excitation.

¢ S 4 i N -
a 09 1 11 12 1.3 1.4 15
gamma vt

Fig. 8. Full-state-feedback; RMS of the inputs,
ul and u2.

-0a11

-0.012

-0.013

A n I i i L
4“"3.8 09 i 11 12 13 14 1.5

gamma x10*

Fig. 9. RS full-state-feedback, maximum eigen-
value.

Let the state x consist of the displacements of first, second,
and third floors, augmented with the velocities of first,
second, and third floors respectively. If we assume a simple
shear frame model for the structure, then we can write the
governing building equations of motion in state space form
as

#O= [yt _ybrc]Ho @ (23)
+ [ o Bs] () dt+[ —OFJ dux 1)

where
m 0 0 —4k cosa
M, =[ 0 my 0|, B,= 0 }
0 O ms3 0
citecy —c; 0
C;: —C Cz+C3 —Cal (24)
0 —Cc3 C3
1 kitky, —k 0
Fs: 1], Ksz "kz k2+k3 “ka}
1 0 —kys ks

and m;c;k; are the mass, damping, and stiffness, res-
pectively, associated with the ¢-th floor of the building.
The values are given in Table 1. The k. is the stiffness of
the tendon and e« is the angle that the tendon makes with
respect to the floor as shown in the Figure 10. The

disturbance % is a Gaussian white noise representing the
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earthquake with E{dw(d}=0 and E{duw()dw(H}= W dt
in this example, W=1.00 in?/ sec®. The terminal time, ¢,
is taken to be 10 seconds, and the weighting matrices are

Ks 0 3Ix3

given as R=+k, and @ =[
03x3 03)(3

], where 03«3 are

three-by-three matrix of zeros.

Fig. 10. Schematic diagram for three-degree-
of-freedom structure.

Table 1. Model parameters of the 3DOF structure.

Constants Values
myzs (Ib-s%in) 5.6000
c1 (Ib-s/in) 2.6000
cz (Ib-s/in) 6.3000
¢s (Ib-s/in) 0.3500
ki (Ib/in) 5034.0
kz (Ib/in) 10965
ks (Ib/in) 6135.0
kc (Ib/in) 2124.0
a (degrees) 36.000
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Fig. 11. Optimal mean; full-state-feedback, RS,
3DOF.
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We designed the RS controller for this system with

parameter values given in Table 1 for the cost function (2).
The parameters, mass, damping, and stiffness are chosen to
match modal frequencies and dampings of the experimental
structure in [111.
Figure 11 shows the average values of the cost function
E{ T} decreases as the risk-sensitivity parameter 7 gs
increases. On the other hand, the variance of the cost
function decreases rapidly and then increases back to the
classical LQG value. See Figure 12, Thus, we note the
variance of the cost function can be smaller than the LQG
case for some values of 7 gs.

Varid}

s0 f I S L A
0§ 1 1.6 2 25 3 36 4
gamma RS

Fig. 12. Optimal variance;
RS, 3DOF.

full-state—feedback,

Figure 13 shows the RMS displacement responses of first
0., second o,,, and third ¢,, floors; and the RMS velocity
responses of first o,, second o,, and third o, floors
respectively, versus the risk-sensitivity parameter, 7 gs.

These values are calculated using (14). It is important to
note that both third floor displacement and velocity can be
decreased by choosing small ygs. Note that not all the

RMS responses decrease as yps decreases. If we choose

smaller 7ygzs, note that we require larger control force,

0.022 T S T T

% gogf- R

éoma

0.01
%

003

TP S o S SN SR SR A S
no2
0.016

o

oDa

2
éu 03

Fig. 13. Displacements and velocities; full-state-
feedback, RS, 3DOF.
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which means that more effort is needed to reduce the RMS
displacement and velocity responses, see Figure 14.
Furthermore, as 7y zs decreases the maximum real part of
the eigenvalue decreases until certain point and starts to
increase rather dramatically. See Figure 15. Thus once
again, this shows the tradeoff between the stability margin
and the performance.

038

0.3

035 i -

0.2

MT ------
F

El

a1

005

o i ; i
0 05 1 15 2 25 3 3.
gumma RS

Fig. 14. Control force; full-state-feedback, RS,

3DOF.

Mex renl part of the Eigervake

Fig. 15. Stability; full-state—feedback, RS, 3DOF.

VI. Conclusions

This paper introduced RS control as a generalization of the
classical LQG control. Also, it derived the average cost
performance of an RS controller in terms of the covariance
of the state. As applications, the ECS-1

and a 3DOF structure control were considered. In latter two
cases the RMS value of the states were varied by changing
the risk-sensitivity parameter, 7gs. Thus, the tradeoffs
between fuel, precision of the maneuver, and the stability
margin of the system had been shown in the space satellite
application. The structural control application is also
considered to show the tradeoff between the stability and
performance with respect to the risk sensitivity parameter.
For the satellite application, the next step may be to apply
the RS control method using a real-time satellite simulator
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