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Robust H. Controller for State and
Input Delayed Systems with Structured Uncertainties
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I . Introduction
The last decade has witnessed a significant advances
in the H, control theory. However, in case there are
parameter uncertainties in the plant model, the stability
and the performance of the standard H. control

cannot be guaranteed. To deal with both parameter

uncertainty and input disturbance, robust H. control
has been proposed in recent years[1-4].

For the time-delay systems, there has been
considerable research on the Hs, control for

disturbance attenuation[5-7] and the robust stabilization
under parametric system uncertainty[8-10]. However,
there are only a few publications on the robust H.

control for linear systems which are subject to both
parameter uncertainty and exogenous disturbance[ll-
13]. In [11] and {12], robust H. control problem for

state delayed systems are addressed and a robust He

controller for the input delayed systems is proposed in
[13].
In this paper, a robust H,. controller is proposed for

state and input delayed linear systems with structured
uncertainties. The proposed controller stabilizes the

uncertain delay system and reduces the H. norm of

the closed loop transfer function to a prescribed level
for all bounded structured uncertainties. The proposed
controller is a memoryless state feedback controller
which can be obtained by solving an LMI problem.
The LMI problem in this paper can be reduced to the
LMI problems in [8] and [6] as special cases. Several
convex optimization algorithms can be applied to solve
the proposed LMI problem[14].
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II. Main resuits
Let us consider a linear system with state and input
delays

(D

I

(Aot God WH)HD + (A, + G.d\ )t k)
+(By+ My NoYau( )

+ gl(Bﬁ— Md Nyl i— b y) + Dl D)
2(8) = Ex(b

(1)

where x(f)eR” is the state, w(f)eR™ is the control,
w(He R’ zeR*
output, and %y, 290 are delays in the system. In
addition, A;, B, G;, H;, My, N;,, D and E are constant

is the disturbance, is the controlled

matrices with appropriate dimensions. 4,; and 4.,
are time invariant parameter uncertainties which
satisfy the norm bound condition
4.0 <1, 14dul<1
ie. |4l <1 where
A 0 0 0
0 4dy 0
4y
4:= -
A 1»
. AZl .
|0 0 e Ay,

We shall design a memoryless linear state feedback
control

u(t) = Fx(D (2)

where FeR™ " is a constant matrix. The closed loop

transfer function T ,, from the disturbance w to the

output 2 is given by

T..(s) = E[sI Ay~ ﬁ:‘A Tk
oy 3)
— ;: B\kF - u.] D
where A\O L= A0'+‘ G()A 10H0+(BU+ Mod 20N0)F,
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A= A+ GdH;, and B\k::

i, k.

Bk+ MkAZka fOr all

Our aim Is to find the robust H, controller which

stabilizes the delayed system (1) and guarantees the

H. norm bound 7 of the transfer function 7T ,,,
namely, | T,.l « < 7 for all uncertainties
| 41 < 1. The following lemma gives a sufficient

condition for the robust stability of the closed loop
system with the control (2).
Lemma 1 : If there exist positive definite matrices

Py, 13\”, 153 and positive constants g4, fo, Which

satisfy the matrix inequality
(A0+B()F)'PU+PU(A0+B0F)+ z'ﬁ# II'P()G,‘G,”PO
, 1 ,
+ P M ﬁ‘b—‘ i Hi
oMMy Pyt 2
+ B FNONF > PA P AP,
=) 1t &

+ B PBEPEF BIPt Pt 2 P <0

4

then the delayed system (1) with the control (2) is
”A" < 1 and h“,hzjg > O

Proof : Let’s assume that w(#) is equal to zero for

stable for all

all t. Define a Lyapunov functional W(x,) as follows:

Viz) = x{(HPyx(H+ 121 ftthX'(S)le-x(s)ds
* Zl f:-h“_x'(f)szx(r)dr.
j%;_@ =y (O W (1) (5)
where

W) = (O x(t—hy) - x(t=hyy)
x(t=hy) - x(t—hy)]

and
z P\A, -+ PyA, P B\F - PBF
A'P, —Py 0
W: = 1/4\17’P0 _P“,
F/El,PO _Pgl
FB/P, 0 — Py,

The submatrix Z in the above matrix W is defined
by

2:: XO,P()"‘P()A\Q‘*‘ 211311"‘*‘ g]PQk.

The matrix W can be

W=W+ 04¥ + T4 P where

denoted by

z PA, - PA, PBir Py,B.F
APy —Py 0
W:=| A,/F —Py,
F'B\'Py - Py
FB/P, 0 — Py,
PGy, PM, PG, - PG, PM - PM,
0 0 0
Q=
0 0 0
and
f[“ 0 . 0
NF 0 0
0 H
.=
H,
N\F

The submatrix Z in the matrix W is defined by
Z L= (Ao‘l‘BoF)'Po'}'Po(AQ_i‘BOF)

+ 2P+ 3 P

Let’'s assume that u,;, and p,, are positive constants
t=0,,p and k=0,,q.
positive definite matrix M as follows

M = block dlag {,U 101 10, 4 201 20, M llI 11s "
gl g a0, 1 quzq}.
The inequality

QAT + T ALY < OMO +¥ M™'¥

for all Define a

is then satisfied for all 4] <1 and positive
constants gz, and ftg. Hence, we obtain the
inequality
4 PA, - PA, PBF PyBF
AP, — P 0
W< | AP, - P,
F B,'P, - Py
FB/Py 0 - Py
where
Z = (AgtBF) Pyt P A+ ByF)+ 31 PiGiG Py

+ goﬂszUMkMk'P(ﬁ" Z‘bﬁ H/'H,

L pneves £ Pve £ 7
+ B FNCNE 2 Pt ;Pﬂ,
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and
Py := Py—— H/H,
ﬂli
Py i= Py— —— F N/NF.
H 2k

Hence, if there exist positive definite matrices P,

P, and positive constants f,;, f which satisfy

the inequality (4), then W is negative definite [15]
and the Lyapunov derivative (5) is negative definite. ll
The Riccati inequality (4) can be represented by an
LMI as the following lemma.

Lemma 2 : The Riccati inequality (4) is equivalent
to the LMI

R AQ
QA ~Qu
@A, -Qu
YB' “Qu
Y8, - Qu i 0
Ha@y ~rwlw

H,Q -l (6)
MY —wunly

AQy BY - BY QHy - QH,2 YN, - YN,

0

NY 0 — ol

where Q= Poil, Q= P[fl PT;‘P{I, ng:P(fl P;kPOAl,
Y=FP; !
and

R = AOQ0+QOA0’+B()Y+ YBU'+ ng,

+ §1Q2k+ gb# GG+ ZOﬂZkMkMk’~
The following theorem provides a delay independent
robust stabilizer for the state and input delayed system (1).
Theorem 1 : If exist Y, @ > 0,

Q1> 0, @y > 0 and positive constants £, o
which satisfy the LMI (6), then the state feedback

control

there

w(f) = YQy 'x(# 7

stabilizes the system (1) for all |4 <1 and

Rinho > 0.
Proof : If there exist Y, @ @, &2 and positive

constants y;, #o Which satisfy the LMI (6), then

the state feedback control gain F is equal to YQO"l
as in the lemma 2. Hence we obtain the theorem. W

We have obtained the robust stability conditions and
the robust controller for the state and input delayed
system (1). The following theorem provides a robust
H., controller which guarantees the H, norm bound

gamma of the closed loop transfer function of the
system (1) for all bounded structured uncertainties.
Theorem 2 : If there exist Y, @, > 0, @, > 0,

Q2 > 0 and positive constants y, g, f9 Which
satisfy the LMI

ROAQ - AR BY
QAL —Qu

Qn’AV» . -Qu
VB, -Qu

B)Y QH, 0 QH, YN, - YN D QE

YB ) -Qu
H,Q, “wal <o
H,Q, ) —upliy
MY —swdn . (8)
N4Y . —Haed

[ -l
EQq -
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then the state feedback control
Wh) =YQy 'x(t)

stabilizes the system (1) and guarantees the H. norm
bound of the closed loop transfer function T ,,. in (3),
te. | T,ull o < 7 for all uncertainties | 4] < 1.

Proof : If Y, @ > 0, @y, > 0 and @, > 0 are
the solutions of the LMI (8), then the solutions also
satisfy the LMI (6). Hence from the theorem 1, the

state feedback control (7) stabilizes the state and input
delayed system (1) for all norm bounded uncertainties.

Using the relations, Py= Q, . Pl= Q()*IQ”Q({ g
Pp = @ 'Qu@ ' and F=YQ, ' it
shown that the LMI (8)
matrix inequality

can be

1s equal to the following

W+ oMo + T M 'y +

Lpoop+LlEE 0 - 0
Y Y
0 0 0
<0
O 0 cee 0

where W, @, ¥ and M are defined as in the proof
of lemma 1. Since the inequality

QA + TAY < OM '@ + T MV

is satisfied for all | 4l <1, we obtain the matrix

inequality
1 . 1 =
P()DD P()‘*~ EE 0 oot 0
7 7
0 0 0
W+ <0
0 0 0 |
where W is defined as in the proof of lemma 1.

Therefore, the following inequality
Pyt Ay Pyt B P+ B Pot DPAP AP+
S PBFPYF Bt Lppopi+ LEE o
Il 41 <1. Let's define
a positive definite matrix S as follows:

is satisfied for all uncertainty

S L= _(P()Iq\o"" 20’P0+ iﬁllpll+ ;lPZk
+ B PA P AP+ 3 Py B FPLF B P
+lyPODD'P0+ iyE’E).

Then we have the equation
P+ APt Bt B Puct DPAP; AP+
> PBLFPLF B/Py+ L ppopsLEBLS = 0
and
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(—jwl— Ay — ,21 Ae™— g:lF' Bye )Py +
Pyl jwl — Ay — g}me”’””"— gIEFe*’“’“) -S5-

Lppop, - Lee - 3 W) + B Vil
where

WiGjw) = Py + PyA P APy
_ :q\x'PU e.lwh.,_Polq\ie*/whu v
= [P Ae " =P P A/ Pye™" P,
and
Vi(jw) - =Py + PQB\IeFPZ’le B/Py
~F B/ Py~ PyBiFe " _
=[Py BiFe " =Pyl Py [F By Pye™"* = Pyl.
W; (jw) and
i=1,,p, k=1,,4q.

From the definition, V,(w) are
nonnegative definite for all

Let’s define a matrix
XGu) - = Gwl- Ay~ 23 Ae "= 3 BFe "*) 1,
Then the equation (9) can be rewritten as
X(=u) Py + PyXGw) = 2 W G) = 2 Vilin)
-s-Lrppr-LER =0
Hence, following the similar procedure as in the proof
of the theorem 1 in [5], we can show that 7 is the

H. norm bound of the closed loop transfer function
T .. (3). [ |

The theorem 2 provides an LMI problem to obtain a
robust Ho. controller which guarantees the H, norm

bound 7 for all bounded uncertainties. In order to find

the robust H. controller which provides the smallest

possible H, norm bound, we must solve the

minimization problem for 7 subject to conditions
Q> 0, Q> 0, Qo> 0, ;> 0, 9 > 0 and
the LMI (8). It is also noted that the LMI (8) is
reduced to the LMI (6) when the H, norm bound 7

approaches infinity.

. Conclusions
In this paper, a robust H, controller for state and
input delayed systems with structured uncertainties
ispresented. The proposed robust H. controller does
not only stabilize the state and input delayed system,
norm bound for all

but also guarantees the Hy

uncertainties [ 4]l £ 1. The proposed controller is a
memoryless state feedback controller which can be
obtained by solving the LMI (8) with convex
optimization algorithms.
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