Synthesis of The Diethylaminoethyl Chitin Derivatives and Their Flocculating Behavior

Diethylaminoethyl Chitin 유도체의 제조와 그들의 응집거동에 관한 연구

  • Kim, Chun-Ho (Dept. of Industrial Chemistry, Hanyang University) ;
  • Kim, So-Yeon (Dept. of Industrial Chemistry, Hanyang University) ;
  • Jung, Byung-Ok (Div. of Polymer Science and Engineering, KIST) ;
  • Kim, Jae-Jin (Div. of Polymer Science and Engineering, KIST) ;
  • Choi, Kyu-Suk (Dept. of Industrial Chemistry, Hanyang University)
  • 김천호 (한양대학교 공과대학 공업화학과) ;
  • 김소연 (한양대학교 공과대학 공업화학과) ;
  • 정병옥 (한국과학기술연구원 고분자 연구부) ;
  • 김재진 (한국과학기술연구원 고분자 연구부) ;
  • 최규석 (한양대학교 공과대학 공업화학과)
  • Received : 1996.11.04
  • Accepted : 1997.02.04
  • Published : 1997.04.10

Abstract

A DEAE-chitin was prepared with DEAE HCl in an aqueous alkali-chitin solution. The resulting DEAE-chitin exhibited a highly improved affinity to water and organic solvents, It was N-deacetylated by heating in aqueous 10% sodium hydroxide containing sodium borohydride for 9h at $80^{\circ}C$ to produce DEAE-chitosan. These conditions were milder than those for the N-deacetylation of chitin. In order to increase its cationic character, the DEAE-chitin was treated with ethyl halide to give TEAE-chitin. The structural changes in the chitin derivatives were confirmed by using both FT-IR and $^1H$ NMR, and their flocculating behavior, in kaoline suspension showed the optimum property at a weak alkaline pH and 8 ppm concentration of resin conditions.

DEAE-chitin은 alkali-chitin 용액에 DEAE HCl을 이용하여 제조하였다. 제조된 DEAE-chitin은 물과 유기용매에 대한 향상된 용해성을 나타내었다. DEAE-chitin은 chitin의 탈아세틸화반응보다 온화한 조건인 sodium borohydride를 함유하고 있는 10% 수산화나트륨 수용액으로 $80^{\circ}C$에서 9시간동안 탈아세틸화반응을 행하여 DEAE-chitosan을 제조하였고, DEAE-chitin의 양이 온성을 증가시키기 위해 ethyl halide를 이용하여 4차화시킴으로써 4차 암모늄기를 가진 TEAE-chitin유도체를 각각 합성하였다. 이들 합성유도체들의 반응에 따른 구조변화는 FTIR, $^1H$ NMR 등으로 확인하였고, 카올린 현탁액을 이용한 응집실험결과 pH가 약 알칼리일 때, 그리고 수지농도가 8ppm일 때 최적의 응집성능을 나타냄을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. Chitin R. A. A. Muazzarelli
  2. Polymer v.9 K. S. Choi;Y. M. Kim
  3. Chem. Macromol. Symp. v.33 K. S. Choi
  4. Chitin in Nature and Technology R. A. A. Muzzarelli(ed.);C. Jeuniaux(ed.);G. W. Gooday(ed.)
  5. Chem. Ind. v.74 H. Unno
  6. J. of Korean Ind & Eng. Chemistry v.6 C. H. Kim;J. W. Lee;B. O. Jung;B. K. Chang;K. S. Choi;J. J. Kim
  7. J. of Korean Ind. & Eng. Chemistry v.7 C. H. Kim;B. O. Jung;K. S. Choi;J. J. Kim
  8. Int. J. Biol. Macromol. v.8 Dormard M. Rinaudo;C. Terracin
  9. Agr. Biol. Chem. v.35 T. Imoto;K. Yagishita
  10. Kobunshi Ronbunshu v.40 H. Serita (et al.)
  11. Polym. J. v.11 O. Somorin;N. Nishin;S. Tokura;J. Noguchi
  12. Proceedings of the First International Conference on Chitin/Chitosa;MIT Sea Grant Report J. Blackwell;R. Minke;H. Gardner;R. A. A. Muzzarelli(ed.);E. R. Pariser(ed.)
  13. Chitin, Chitosan and Related Enzyme S. Tokura;N. Nishi (et al.)
  14. Polymer v.34 J. H. Kim;Y. M. Lee
  15. J. of Korean Ind. & Eng. Chemistry v.6 C. W. Jin;C. H. Kim;K. S. Choi
  16. Carbohydrate Polym. v.18 S. Katsura;A. Isogai;F. Onabe;M. Usuda
  17. Polymer Structure, Properties and Application R. D. Deanin
  18. J. Am. Chem. Soc. v.86 E. Gruenwald;E. Price
  19. Carbohyd., Res. v.146 S. Nishimura;N. Nishi;S. Tokura;K. N. Shimura;I. Auzuma
  20. Carbohyd. Res. v.239 E. Muraki;F. Yaku;H. Kojima
  21. Kobunshi Ronbunshu v.52 H. Serita