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Robust Control Design Applicable
to General Flexible Joint Manipulators
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1. Introduction

We design control scheme for flexible joint manipu-—
lators in the presence of nonlinearity and uncertainty. For
this nonlinear system dynamics, feedback compensation
must be considered to achieve good performance. It has
been shown that joint flexibility has a significant
influence on system performance compared with rigid
manipulators [1][2]. So far there have been various
efforts devoted to the study of control for flexible joint
manipulators. References of these efforts are cited in [3].

The exact model based approach includes singular
perturbation [4], feedback linearization scheme [5}[6] and
invariant manifold scheme [71[8]. Since the control
schemes which are designed using this approach require
exact knowledge of the robot parameters, it is necessary
to study the control design issue in the presence of
uncertainty. The use of adaptive control for flexible joint
manipulators has been reported in numerous literatures.
The control allows the existence of uncertainty in system
models. The adaptive control schemes developed in
[9]-{11] also adopted the singular perturbation and linear
parameterization technique. We are concerned about the
possible excessive transient response before adaptive
parameter converges in adaptive control. This paper is
based on the design paradigm often used in robust
control based on Lyapunov approach for the uncertainty
issue. This approach is the only approach whose
theoretical basis has been established and which is
applicable to nonlinear systems with time-varying
parameters. Contributions which are based on robust
control in the area of flexible joint manipulator have been
done in [12][13]. These schemes need acceleration and
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jerk feedbacks. As for robust control, numerous control
schemes have been introduced based on a structural
condition on the uncertainty, namely, the matching
condition [14])[15]). However, this condition does not hold
in certain cases which include the flexible joint
manipulator with uncertainty since that system does not
have a control input for each node.

In this paper we propose a control scheme by
introducing implanted control which utilizes a state
transformation as shown in [16]. Since the control
schemes proposed in [16][17] rely on system geometry in
inertia matrix, it is sometimes necessary to propose
assumption on inertia matrix such as positive definiteness
and upper—-boundness.

This paper aims at developing a robust control by
using computed torque scheme. With this algorithm
practical stability is guaranteed. The control offers a
more feasible tool in designing contro! for the flexible-
link manipulator system. We demonstrate procedure of
designing robust control with computed torque scheme
and show simulation results by applying to 2-link
flexible joint manipulator.

II. Flexible joint manipulators

Consider an n serial link mechanical manipulator. The
links are assumed rigid. The joints are however flexible.
All joints are revolute or prismatic and are directly
actuated by DC-electric motors. For the flexible joint
robot define vectors

a:=[q*® ¢* g% ¢ 7
q 2n—1] T

and q,~=[ql (13 "'42"_3

4 .. 3 ..

, where ¢2, ¢ are link angles and ¢', ¢
are joint angles. Let be the Zn-vector of generalized
q=[q‘] (1

aq;
coordinates for the system. We model the joint flexibility
by a linear torsional spring at each joint and denote by
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K the diagonal matrix of joint stiffness. We assume that
the rotors are modeled as uniform cylinders so that the
gravitational potential energy of the system is inde-
pendent of the rotor position and is therefore a function
only of link position. The dynamic equation of motion of
the flexible joint manipulator can be expressed in terms
of the partition of the generalized coordinates [2]:

[D(OQ ) 0]][ fl:]_,_[c((lzbq'z)ll’/]*_[ G((;I /)]

i, @
K(g,—ap 1[0
+ ‘K((II"Q;') [u]’

where IXg;) is the link inertia matrix and J is a constant
diagonal matrix representing the inertia of actuator.
Clq,, a)q, represents the Coriolis and centrifugal force,
G(g,) represents the gravitational force, and u denotes the
input force from the actuators. K is a constant diagonal
matrix representing the torsional stiffness between links

and joints (hence K ™! exists).

III. System description

Since the controllers introduced in [16]{17] depend on
the condition of boundness of inertia matrix D(q),
which refers to uniformly positive definiteness and
uniformly boundedness from above and below. Thus, we
need to investigate whether the current system satisfies
that conditions. For instance, consider the manipulator
with one revolute and one prismatic manipulator in [18].
There does not exist constant upper-bound of inertia
matrix. Moreover, if we use Lyapunov function based on
D(g) we need the information of g, in case the
system has time-varying uncertain parameters. This
causes more cost in implementing controller than system
with constant uncertain parameters, which only utilizes
the skew-symmetric property. With this, we try to
construct a different control scheme by introducing
computed torque scheme, which invokes only quadratic
Lyapunov function.

In this section we construct a system description. The
system is decomposed into nominal part and uncertain
part and is expressed in matrix form. The flexible joint
manipulator system is shown as follows:

Dg(l )+ Ma,qd)+Glg)+Kq,=Ka,, (3)
f0j+K(G,‘_Gl =u.
Let X,=¢q;, X2=4q, X3=q; and X,=gq; also let
x1=[XT X717, x,=[X7 X{17 and x=[x] x]]17 .
We rewrite the first part of (3) by using state
variables defined above:
X 1 =X,
X, =q¢/=—D "(q)Nq.,q)
—D Nq)G(a)—D Nq)Kq,
+D g )Kg; 4
=—Lyg/~Lug+Lyg+Lyua,
_D_I(GI)N(QI, 0'1)_D_1(01)G(01)
—D'l(ll1)K01+D71(lll)KlI;‘,
where L, LysR™".

From now on, “overbar” on parameters represents the
nominal portion and 4 represents the uncertainty portion.
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Here, we consider uncertainties
express (4) in matrix form as
Nixy() =A x()+fr.(x(D,a,(P)
+Bi(x;(D,0,(D)ag; (D
=_ﬁx1(l‘)+f1x(x1(f),d1(t)) 5)
+ Bi(x(8))g;(D
+4B(x,(9,0,())q;(D,

in parameters and

where
. 0 I
A [_Lu _LZI],
. 0
flx(xl’al) . [fle(xlvO'l)]’

Fadlxy,00) =Lpa+Lag,
"D_I(Qz, g1)Maq,, 4.1, 01)
—Dkl(lll, g1)G(a, 0'1)
"D_l(ah g )K(c))q,

"N = 0
Blen =] (p-rgm ) ®)

A 0
ABl(xl’dl) . —[A(Dhl(Q[,al)K(oﬂl))],

and o¢,(H is the uncertainty parameter vector in the
subsystem N;. [D 'K], denotes the nominal value of
the designated matrix, which is identical to D ‘K.
For the second part of (3) we rewrite it as follows:
Xa =X,
Xy =q;=—J] 'Ka;+] 'Ka.:+] 'u @
=—Lpg,—Lypqg;+Lq,+Lng,
~J] 'Kq;+] 'Ka,+] ',
where L, L zp=R™",
The above equation can be expressed in the matrix form
as
Npxod) =Asx:(D+ Fo(2(D, 05,(8))
+ By(0:(D)u(t) 8)
=A 2D+ for (x(D), 62(8)
+ B+ ABy(05 (D)2l ),
where
0 I
A,= ,
2 _LlZ —LZZ]
falx,05) (9)
0

=Lpg,+Lpag;,—] "(02)K(a2)a,|,
+]71(62)K(02)111

[ 7] aBo0=] 45t )

and o,(#) is the uncertainty vector in the subsystem N,.

Assumption 1 For each subsystem the mappings
o0.(+)2R—>Z CR’, o0, ):R>Y,CR"
measurable with Y,, ¥, prescribed and compact.

Il

B,

are Lebesgue

The above assumption implies that the uncertainties
0,( +),0,( ) are the functions of time and the range of
them remains within the bounded set and they have
dimensions of o, o, respectively. Also, the values of
o(+) and oy(+) are almost everywhere continuous
with respect to time.

IV. Controlier design procedure
We can rewrite (5) as follows:
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Nixy =Ax+fulx,,00)
+ B(x)g;+4B(x1,0\)q;
=Ax1+f1(x,01) (10)
+(E(x1)+ABl(x1,01))ul
+(B(x)+ 4B (x,,0))q;,—uy).
Here, we introduce an implanted control w, without
changing the dynamics in the subsystem N,. Here, we
see that (10) has ¢ (9~ wu,(# term on right-hand side.
We substitute this ¢;— %, with other state variable.
Thus, a state transformation is introduced.
Let z,=[Z7 Z3}", 2,=[25 Z{]” and z= [2] 2317,
where
§1=§1,
Z§=a_,i =X~ uy, (D
Zy=q;,—u =X, u,.

This implies that z,=x, and z,=x,—[«} «]]7. By

this state transformation we construct the trans- formed
subsystem for the subsystem N:
]/V\l:él =A121+Blu1
+f1z(21,d_i+31(q;"u1) 12)
=A12l+ Bl(zl)u1+ABl(01)u1
+ 1z, 0)+B(g;—uy),
where f,,(+) is identical to f..(-) since z,=x, from
the above state transformation. We see that uncertainties
in f,, and 4B, satisfy the matching condition for
hieR™", E,€R™".

f12(21.01)=§l21)h (z1,01), (13)
4B \(z,,0,)=B (2 )E (z1,0)).
From above matching conditions, we can express (16) as
follows:
Niz, =é_121+?1(21)u1
+ B2k (21,01) (14)
+ Bi(z))E(z,,0,)u,
+B(z,a)(q;—u).

From (13) we obtain %#,(-) and E(-):

hy =[D7T'K),"(LyZ,+LyZ, 15)
—D'N-D"'G6-D 'KZ)),
E, =[D'Kl1,'4D™'K). (16)

Since k(- ) is continuous and o,(#) is in a compact
set we see that there exists a bounding function o,( - ):
R"R ., such that

”h1(21,01)|l5_p_1(21). an
Assumption 2 : There exists a constant o g, such that

max
0,€3, “El(zl,dl)“

- Ur?gle D Yz K1} (18)

A(D_1 (21 , UJ)K(Ul))”
.

where n corresponds to number of links.

This assumption implies how much the uncertainty
varies over the nominal value and the nominal value
[D ' (z)K],! is not far from D 'z, 6) Klgy). If

the ratio 4D~ '(z, o)) Klay)) to [D 7 '(z))K], ! is less

PE, =

ROl - A1Sst - NABRES =2X A4 A A1 & 19% 2

than VLn' the condition holds thus, we can compute the

value of pg,. This assumption also implies that the
nominal value D 'K is not far from D z,,0))

K(oy). In a single link robot, this value becomes
0?1:}1 d(al_—gl :(al). where d and k which are scalars

represent link inertia and joint stiffness respectively. This
can be easily understood.

Remark : We see that the allowable upper bound of g,
depends on n, which may be restrictive in designing the
controller in high degree of freedom systems. Moreover,
if system consists of prismatic joint manipulator we can
not estimate o g, as above. This is since the bound of
D(q ) has to do with z,. However, if D(g,) is known

then g, becomes a’?éle |’ K ' 4K(s)li. Then we

have a different condition for pg, which does not
depend on n. Furthermore, we do not need the
upper-bound condition for inertia matrix in designing
controller. These will be shown in detail later in Section
6. Let o,(-):R™ >R, be chosen such that it is C?

and

01(21)2(1—‘/;195,) b ei(zy). (19)
Let

#1= B, Pzpi(21), (20)
also

pi=luusapall 2

ur=lupum-unyl’ (22)

For given scalar £,>0, u«,, is given by

- oz, il e,
_ (lee g 11
L= Tty (23)
—sin(5 e i(z0), iflludse,
i=1,2,...n. Note that
S"—%pl, if OS/JHSEI
Uy 1 (24)

2—%01, if —e;<p<0,

P >0 is the solution of

PA+ATP,=—-Q,, @0, (25)
and L, and L, in A, are selected such that A, is
Hurwitz.

From (7) and (11) we construct the transformed sub-
system for the subsystem N,:

and ljuy; 1<0,.

Zs =2,
Z, =—J'KZy— u,— ] 'Ku,
+]_1K21+]_1u (26)
=—LyZ3—LypZy+LpZ,s
+LpZs—J 'KZy—u,
~J 'Ku+J\KZ T .
The above equation can be expressed in the matrix form
as

ﬁz 22'2 =A222+@02)u+fk(z,dln02)
=A222+(32+AB2)M (27)
+f2{2,01,02),
where
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folz,01,0,) .
i=LypZs+tLpZs—] (02)K(0,)Z, (28)
_ul(zl,zz,Ul.Uz) T N (o)K(o)u(2y)
+7 I(GQ)K(UQ)Zl.
We have the matching condition met for the subsystem

N :

fal2,01,0))=Bohs(2,0,,0)),

ABz(Uz)— 2E2(02)
From the above matching condition (29), we construct
the transformed second subsystem
ﬁz Zéz =i2‘22+_B_2(0'1)_u (30)
+ ByE(0)u+ Byhy(z,0,,05).

We now propose the control design. From (29) we have
hy(z1,24,01,02)
=JLpZ3+LpnZs—u(zy,2,,01,0,)

+ =T N0)K(0)Z3+] (0,)K(0,)Z, (31
—J Yo )K(o)u (z1)),

(29)

E2(02)=FA](02).
Since #y( ) is continuous and o,(H and o,(# are in

compact set, there exists a bounding function
0o( - XR”XR™ SR, such that
”hZ(zlrzZ,01,0'2)”3—9—2-(21,22). (32)

Assumption 3 : There exist a constant A g, such that

. — min
/IEZ' - GZEZZ Amin(Eg(O’z)) (33)
_  min — -1 _
T 0,3, AmnC T da9)) >—1.

The meaning of the assumption can be explained similarly
to Assumption 2. In other words, this assumption implies
how the uncertainty of joint inertia 4/ can be far from

the nominal value J ~'. Usually, the joint inertia is of
diagonal matrix. Hence, the value A, takes the minimum

value out of the n joint.
Let o (- ):R*”xR¥>R., be chosen such that
poz1,29)2(1+4g) P oylay,29). (34)
Let
My = —EZTPZZZ O2. (35)
For given scalar &,>0, choose the control input u as
follows:

w(zy,29)
—“—Ze(jl’-pz(zl,z» if lluy(zp)li<es.
P, is the solution of
AlPy+PyAy=—Q, @0, (37
and L, and Ly in A, are selected such that A, is
Hurwitz.
Assumption 4 : There exists a constant ¢ >0 such that
q,o0)=2a Vq,€R", Vo,€X,. (38)

Remark : This Assumption implies that inertia matrix
is positive definite. This is different from the previous
assumption in [16] which requires the inertia matrix to
be positive definite and uniformly upper-bounded.

Theorem 1 : Subject to Assumptions 1-4, the system

(14, 30) is practically stable [15][16] under the control
(36). Furthermore, the uniform ultimate boundedness
region can be made arbitrary small by suitable choice of
e; and e,.

Here, the dynamic system is practically stable if the
following properties hold.
1) Existence and continuation of solution, i) Uniform
boundedness, iii) Uniform ultimate boundedness, iv) Uni-
form stability. The uniform ultimate boundedness means
that the response of the system enters and remains within
a particular neighborhood of the equilibrium position after
some finite time and remains close thereafter.

Proof : Choose the Lyapunov candidate as follows:
Wz1,22)=V(z1)+ Viz,), (39
where
V1(21)=271.P121, (40)
Vz(zz)’—‘ngzzz. (41)

Here, we see that V,(z,) and V,(z,;) are both positive
definite and decrescent since
A min(PONZ 1PV (21)SA pa (P DIz 1%
(42)
A min(Pz)H»’Zz“ZS Vol2)<A (P2 2”2'

Let @,= B, P,z,. The derivative of V, along (14) is
V, =2z1Pz, . -
=2271—P1(A121+B1h1+31u1

+EE[Z¢1+BI(GJ'_M1))

=—2Tq,2,+2 P By(h,+u,+E u,)
+227P\B(q;—uy)
5_/1min(111)||211|2+201Th1+2a¥u1 (43)
+2a1Eu,+221P B (q;—u))

=—4 min (01)”2 1||2+2(I{u1

+2aTE u,+2aTh,+227P\B ,Z,.

For g ll=e,, the second, third and fourth terms in
(43) follow from (17), (19) and (23):
20{u1+20{E1u1+20{h1

<2 R o+ 20, 2ylledl 2l
+2 Zlledl [l

—Z:al,

+205, gllal.Jl no1+25; 2l (44)

<=2 Jllaudlor+ 205, 2llarilVno,

+2(1-Vno£)er 2llad
=0.

When |lu j|<e; it follows that
20T, +2e¢TE \u,+2aTh,

=2 Raur 205, 2lleidl Zlud

+2 2illadl Nl
=2 ;x"“(* “‘_Pl)+20 E, 2”0’1:” 01 (45)
+2 gllahﬂpl(l-ﬂ/;p&)
2
=2 5= EL o+ llaulle )

lpl)



Next, by Assumption 4 we have the following inequality
condition for any z,>0:

ZZTP1B Z3
<2 ”Z{PIB 123“ (46)

<ziliz 1P \P Bl + 7 NZ A2 1P Bl
<t dlz P+, e dlzdll?
where
1PBil =P D 'Kl
I[Pyl ID 1 LK 47
<Pyl g "MK
=Pk
Therefore, it follows from (44, 45) and (46) that

V, £—-(A min(Ql)—T1Pk)||Z1||2 (48)

D llzall®

ne
2
Next, let a,= T?zTPz 2.
(30) is given by
VZ —222P222

=22 Py(Agz9+ Bou

+ Bhy+ BoE %)

=—23Q.2,+22 P, Bou (49)

+223PyBohy+225 P2 BoE su

<= A (@21 + 207 u

+2alh,+ 22 Equ.
If |l¢sl=e, then the second, third and fourth terms in
(49) follow from (32), (34) and (36):

202u+202h2+202E2u

The derivative of V, along

<247(— ﬁpmzuazup_z

+2“€Ez( H# “ 032 (50)

< -2lasllos+2la,ll(1+4 E?)Pz
—24 52”02“02
={.
When ||z ili<e, it follows from Assumption 3 that

205u+2ath,+ 20 E u

—202(“ _Pz)+2“02|lpz
+24 g, a5(— pz)
“az”
< —2(— 5= o) +2all(1+ 25 )0, (51)
2
+ 2 g~ ——”‘6’2” )
2
__y dled?® ||a’z|| 142
+2H¢12”(1+/l EJO2
52(1+/1 E,)
S'—‘z—— .
Therefore, we obtain
. 1+3g)
1/2S —A min(QZ)”z 2“2+ —EAZ—EL_ . (52)
From (48) and (52), it can be seen that
V = V1+ VZ
2 neq
S"(Amin(Ql)—flpk)Hzﬂl + P (53)

(A min (Q2) — 7710 Dllz I
+ A,
+ €,(1 E,)
2
If we choose matrices @,, @, and the constant 7,>0

such that

ROt - KiS3} - AIAEIES =2A1 H4A H1S 198 2
Amin(@1)— 1100,
(54)

A min(QZ)_rl_lp k>09

then we have

V < - min{ 2 min(Q1) — 710 A mn(Q2) — 71 ‘0 i}l
+ e

=:—y3llall®+e, (55)
where

- neg e,(1+4g)
€:1=—% 3 .
Remark : If we first choose @, and 7, to satisfy (54),
then this affects the choice of L and L, in matrix
A,. Consequently, ¢, is chosen based on r;. However,
we do not have specific criterion on choosing “best”
gains L,Ly,L;; and Ly which is related to the
system performance. Their “optimal” choice (which
certainly depends on the specific “cost” indicated) is left
for a further investigation.
Following (55), given #,20 if |lzqll<r,,
satisfy the requirements of uniform boundedness, uniform
ultimate boundedness and uniform stability by selecting
{15]

6)l

we can

R, % if »,<R,
dz(rz)— L (57)
rAl L2 ifrOR..
71
Tz(dz, 72) (58)
_ 0 if .<d, -:—;
Y27 72‘72 i otherwise,
rirs'rs dy
8.(d)=R,, (59)
Where 71=min{/1 min(Pl)”l min(PZ)}r
72= 12X {2 e (P1),4 e (P3)}, R .= —f;.
d.= Rz\f Iz QED.
71

Remark : Considering the above control scheme, we need
less computation in case uncertain parameters are time-
varying. The information about D(g,) is needed in
computing bounding function p;(+) when we use
Lyapunov function dependent on the inertia matrix. This
is since skew-symmetric property is no longer utilized in
system with time-varying uncertain parameter.

Based on the stability for the transformed system we
can analyze the performance of the original system. The
performance analysis of the original system is similar to
[16]). Hence, we omit the detail. We can also prove that
the original system is practically stable.

V. lllustrative example
Consider a 2-link flexible revolute joint manipulator
(Figure 1). Let link angle vectors ¢,=[¢2¢*]1T and

joint angle vectors ¢,=[¢'¢®17. Then we have

Dg), Clg,q). Gla), J, K, which are unknown as
follows:
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pay =4 1],

by o=l 7{'_1”(‘1' Qay+ap)Ly+Lay)
+ % (@ay+an)(L s+ Ly,

K
+entegnt 1+ +Ki4d),

4
ty =K (2 ntely+Ky,
ty =l K~ ||((26111+012)L211+11u)
ty =K~ H((¢111+022)L n2),
ts =l K~ ||((011+022)L212+2011)
K,
£ =|| K ||(g12+T+K2(Id

+ Z (ay+ap)(L+Lsy)
+ L an(Lyp+ Layp)),

ty 1=|| K~ ”((du"f'dzz)Lm)
tp = K" ||((011+1122)L211+au)
to = K~ ||(azzL112+Kz)
te =l K~ ”(azszu)
Here, (}2 denotes ?X ?1? and 22 denotes

etc.

15
67)
X7

This also shows that o, is C% Now, we have the

following control:

T
u1=[u11u12] s

dy dn
g, (1'1) . . )
= [=m2lilasing'a’ —myllasing* (% + ¢?
' myl il gsing?q? 0
G(CII)
_[(milg+mql)gsing®+myl ogsin(g+q%)
myl ogsin(g®+q*) ’
=[] 0 ]1 0 [Afl 0
0 ]z 0 ]2 0 A]z
_[K, 0
K= 0‘ Kz (60)
[A
0 KZ 0 AKZ
where
dy :=2aycos(gh+ al2,
dp i=aycos(gY+ap, dy=dyp,
dp i=ap, (61)
ay =mylily,
ayp =my(B B +m Py +1,+1,,
ayn =m212£2+12,
The inertia matrix (g, entries are bounded with
ldyl <2ay+ap,
ldyl <ay+any, (62)
Idzz' <aqp.
Gla)=I[g, g;]1 7 entries are bounded with
|g115311+812,
lg.l<ga,
gu=(mly+myl)g, (63)

] .
[—mm, if fleeyll> e,
— sin( 1 do,, if lepll<es,
”/11” P1, if “/le”>€1
Up= o1
— sin( doq. if |l <e,,
261 o1 # 1l 1

gp=myly g,

ga1=812.
We consider first the system with constant uncertainty.
Let ¢l=n radian, ¢i=0 be desired position of links.
We want links to be placed to the desired position
(upside position) with keeping joint angles 0 radian.

Let g=q’~¢4 and g'=q'—q¢! to represent

position errors. A, Ay Ly,Ly,. Lz and L, have the
following forms:

—_— — x
ﬂ1=[/111 #12]T= B, Piq,; 41]101,

N .
a:=ld—a} &-d1" a=14 17

We have robust control w:

0 0 1 0
0 0 0 1
A =
! Ly 0 —-Ly O
=Ly 0 — Ly, (64)
[ 0 0 1 0
A,= 0 0 0 1
—Liy 0 Ly 0
0 _L122 0 —Lzzz
The boundedness function e, is computed by
3
p1=(o+0%) ¢, (65)
where
on —t11+121?2+t31 q
+t41?2+t51 q )
o2 =t12+t2?2+f32 ?2 (66)

+t42’lITZ+t52 7T

_ ll/zl
.2
€9 P2

M= ETP

T P2 1 leeoll> e

ifllusll<es,,

z[qi—ul

q;—=

z21]sz,

lholl< o <(142 g0,

/152=mm{ 7, " T,

(68)

(69)

(70)

(71

(72)

(73

(74)
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For simulations, we choose m;=m,=1+0.2sin(d,

1=1, 15=0.5, K,=K,= 140.2sin(¥,

Ki=K;=0.5,

Ii=1I,=1, J1=],=0.5, J1=7,=0.25, g=1, &,=150,
€= 150.

Next, choose @Q,=Q,=1,,, where I, represents
4X4 identity matrix. Also, Choose L =L ,=1,
Lyy=Lgp=2,and Logy=Lsm=2. Lyy=L»=1, For

these selected values we can get P,, P, as followings:

135 0 45 0

_o_| 0 135 0 45
Pi=Pr=| 5 0 45 0f
0 45 0 45

)]

Simulation results are shown in Figures (2-7). Figures



2-4 show the system response with feedback linearization
control which is partly adaptable to uncertain nonlinear
system. We assume that the uncertainty portion takes
20% and the nominal part takes the rest 80% of the
system. The system performance is not satisfactory due
to a large steady state error. The feedback linearization
control does not compensate the uncertainty portions.
Figures 5-7 show the improvement of the performance
by using the robust control. With the use of the
proposed robust control, an improved system performance
with respect to smaller settling time and steady state
error is achieved in comparing to the feedback
linearization controlled case.

Fig. 1. 2-link flexible joint manipulator mechanism.
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VI. Conclusion

We have considered robust control schemes for the
flexible joint manipulators the presence of nonlinearity
and mismatched uncertainty by adopting computed torque
scheme and state transformation via implanted control.
By this way we overcome the difficulty of designing
control in mismatched system. This scheme enables us
to choose quadratic Lyapunov function candidates. Thus,
for the system with time-varying or constant uncertain
parameters we use the same bounding function. This fact
overcomes the complexity of computation in system with
time-varying parameter system. Furthermore, we can
construct a control scheme based on the condition of the
bounding function without using the bounding function
explicitly. However, this scheme has some drawbacks in
applications. There are constraints imposed on the
boundedness of inertia matrix and stiffness matrix.
Furthermore, the bound of those matrices needs to be
constant and that bound depends on the dimension of
system. However, these problems can be overcome by
the assumption such that inertia matrix is known.
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