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ABSTRACT

This paper examines a system consisting of a primary structure supporting relatively light
multiple secondary structures. The primary structure is subjected to a stationary random
base excitations modeled as a white noise. The response characteristics of the secondary
structures are investigated in this paper. Proposed are the optimal tuning frequencies of the
secondary structures at which the responses of the secondary structures are more evenly
distributed resulting in the reduction of the maximum responses of the secondary structures

while keeping the response of the primary structure near the minimum point.
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1. Introduction

There are many structures consisting of a
primary structure supporting one or more rela-
tively light secondary structures. Examples
include a light water reactor vessel (RV)
supporting a number of the control element
drive mechanisms (CEDMs)‘?, buildings contai-
ning equipment and piping, and any structure
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controlled by a vibration absorber or tuned
mass damper (TMD).

One of the earliest studies of the primary-
secondary systems was by Den Hartog'? using
a simple two-degree-of-freedom (2 DOF)
model. He has formulated and resolved analy-
tically the classical problem. in which an
undamped single DOF primary structure, subjected
to harmonic force excitation is equipped with a
single DOF absorber. Kelly and Sackman®
analyzed the modal properties of the two DOF
system in detail, developing simple closed form
expressions which provide insight into the
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systems dynamic properties. Igusa and Der
Kiureghim'® extended their model to include
the effects of damping and analyzed the
response to a stationary input. Warburton and
Ayorinde® have derived the optimum damping
parameters for the undamped primary structure
subjected to an harmonic support motion,
where the acceleration amplitude is fixed for all
input frequencies and other kind of harmonic
excitation sources. The explicit formulae for
the optimum parameters of the 2 DOF system
are available under different types of system
excitation‘®™*?.

Recently multiple tuned mass dampers
(MTMD) with distributed natural frequencies
have been proposed by Xu and Igusa™!*, and
also studied by Yamaguchi and Harnpornchai(ls).
Abe and Fujino"®, Jangid"”, Abe and Igusa"”
and Jangid and Datta”®. Joshi and Jangid'®®
presented the optimum parameters of the
MTMD system minimizing the response of the
primary structure subjected to a white noise
stationary random process.

Previous studies referred above mainly focus
on the response of the primary structure. It is
due to the fact that the primary purpose of the
systems they studied is to absorb vibration
energy by interacting with the substructures,
called TMD, to reduce the response of primary
structure. For the secondary structures other
than TMD, however, the responses of the
secondary structures should also be kept low
while reducing vibration of the primary
structure. It should be considered that the
secondary structures might be designed for the
largest responses, even though the other
substructures will not suffer from those high
responses. In the present study. the responses of
the multiple secondary structures are inves-
tigated and the optimal tuning parameters are
proposed to distribute evenly the responses of
the secondary structures while still reducing the
response of the primary structure significantly.
The system excitation is modeled as a ideal
white noise stationary random process excited
at the base.

742 /8222 SBeE X /A 8 A Al 4 F, 1998

2. Mathematical Modeling of the
Primary-Secondary System

The system configuration consists of a
primary structure supporting n-secondary
structures as shown in Fig. 1. The primary
structure and each secondary structure are
modeled as a single-degree-of-freedom (SDOF)
system.

The equation of motion of the system for the
case of base excitation is expressed as

Mi()+ Cx(t)+ Kx(£)= -M 5, (1), (1
where x(t) is a displacement vector,
x(0) = {, () (0 @)~ 2,0 - x,0f 2)

where x, is a relative displacement of the
primary structure to the ground, x;(;=1,2,
-, n) is a relative displacement of the j-th
secondary structure to the primary mass,
x,(¢) is a ground displacement and M, C.

and K are mass, damping, and stiffness
matrices of the system, respectively, expressed

Fig. 1 The system composed of a SDOF
primary structure multiple SDOF
secondary structures
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The primary structure is characterized by
natural frequency «,, damping ratio ¢, and
mass m, while natural frequency, damping
ratio and mass of the j-th secondary structure
are w;,§; and m;, respectively. The complex
frequency response functions for the relative
displacement response of the primary structure
H,(w) and the secondary structures H, ;(w)
to the base acceleration can be derived from

the expression in the Ref. (1) after some
manipulation,

H;

2 n
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where  is an exciting harmonic frequency,
u; is a ratio of the mass of the jth secondary
structure to the mass of primary structure and
#, is a ratio of the total mass of the
secondary structures to the mass of primary
structure, i.e.,

m,

oy 2
< =LA (9).(10)
and i=v-1.

3. Responses to a Stationary Random
Excitation

If the base excitation is modeled as a
stationary random process characterized by its
power spectral density function (PSDF), then
the PSDF of the relative displacement
responses of the system are given by ‘

S., (@)=|H, (@) s, (@) (an
ahd

S, @)=|H., @) Sew, j=1,2, - n (12

where S,(w)is the PSDF of the base

acceleration. If the base excitation is assumed
as an ideal white noise random process, then
PSDFs of the relative displacements of the
system become

S.,@)=|8,)f s, (13)

S, (@)=|H, @) S, (14)

The mean square relative displacements of the
system are expressed as

o
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E[xp2]= SoIl,|Hp(w]2dw, —0<wSw, (15)

for the primary structure and

By )=sr

for the secondary structures.

H, (ofdo _w<o<wo, (16)

It can be seen that the mean square
responses depend on the parameters of &, ¢;
tsy, #;. f,B and =. In this paper, the response
characteristics of the system are investigated
for these parameters.

For simplicity of the parametric study, it is
assumed that the masses and the damping
factors of the subsystems are all the same, ie.,
m, and $-. It is also assumed that the
natural frequencies of the secondary structures
are distributed from w; tow, with equal
spacing. The natural frequency of the jth
secondary structure is expressed as

_ _ntl) B
wi_wp[f+(1 5 )n—l], (17)

where f is the ratio of the average frequency
of the secondary structures wg to the natural

frequency of the primary structure, i.e.,

w()
/= o, , (18)
where
%
DI (19)

The parameter B is the non-dimensional

frequency bandwidth of the secondary
structures defined as
_ W, — 0,
== (20)

3.1 Mean Square Response of the Primary
Structure
Among the parameters of the secondary
structures, g, f, B, and #n are varied such
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that the mean square displacement of the
primary structure attains the minimum value
for given ¢, and ¢;. In Fig. 2 and Fig. 3.
the variations of the optimal frequency
bandwidth A, and the optimal frequency
ratio /Y, minimizing the response of the
primary structure, are plotted for the variation
of the mass ratio u, with the number of
secondary structure # as a parameter. The
subscript p is used to indicate the parameter
minimizing the primary response in contrary to
/% minimizing the secondary responses

presented in Section 3.2 of this paper.
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Fig. 2 Variation of the optimal frequency
ratio, £ versus the mass ratio, u,.

for B=R8". ¢,=¢,=0.02
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Fig. 3 Variation of the optimal frequency
bandwidth, 8% versus the mass ratio,
g, for f=17. £,=1¢,=0.02
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Fig. 4 Variation of the minimum response of
the primary structure versus the mass

ratio, p,. for f=£F, B=p",
¢,=t,=0.02

Fig. 4 shows the variation of the mean
square displacements of the primary structure
versus the mass ratios for the different
numbers of secondary structures when the
B=8" and f=Ff”. The
response is normalized by dividing the mean
square response that the primary structure

would have had under that same excitation if
secondary structures had been

system is at

removed
completely, ie., #=0. It can be seen from
Fig. 4 that the primary response decreases
with an increase in both the number of
secondary structures and the total mass ratio.
It should be noted that the increment of the
number of secondary structures contributes in
the reduction of the primary response with the
total mass ratio g, is kept the same. There is

an initial steep decrease in the response of the
primary structure. As the number of secondary
structures increases, however, the response
remains almost constant beyond a certain
values of the mass ratio and the number of
secondary structures.

3.2 Mean Square Responses of Secondary
Structures

Figure 5 through Fig. 7 show the variations
of the responses of the secondary structures
versus the variation of the frequency ratio f
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Fig. 5 Variation of the responses of the
secondary structures versus the

frequency ratio, f for x4, =007, =9 ,
B=p"*, {,=¢,=0.02
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Fig. 6 Variation of the responses of the secondary
structures versus the frequency ratio, f for

w1 =007, n=3, B=8", ¢=1¢=0.02

for different 4, and n. The responses of the

secondary  structures are normalized by
dividing the average responses of the secondary
structures. The figures give insight into how
the secondary structures are interacting with
the primary analyze the
distribution of the secondary responses, the

response bandwidth B is defined as
B=Elx], - Elx . (21)

Larger B means that less numbers of the
secondary structures are participating in the
interaction with the primary structure, resulting
in higher responses for more-participating

structure. To

g

olo

zE3asxi/A 8 A A 4 &, 1998/ 745



Choon-Eon Jin and Chon-wook Kim

secondary structures while lower responses for

less-participating  secondary  structures.
Narrower B indicates that most secondary
structures are evenly sharing the interaction
effects resulting in almost equal responses of
the secondary structures. The optimal frequency
ratio, /%', minimizing the response bandwidth
of the secondary structure, B, is indicated in
Fig. 5 through 7. In Fig. 7 there is an optimal

point of P, near f=0.65. It should be noted,
however, that the point P is far from the 7,
which means that the response of the primary
structure would increase greatly. Thus, /2

should be taken as the first minimum point
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Fig. 7 Variation of the responses of the secondary
structures versus the frequency ratio, f for
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Fig. 8 Variation of the responses bandwidth
of the secondary structures versus the

mass ratio, u, for f=r>*. =",
¢,=t,=0.02
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near fY as indicated in Fig. 5 through 7. In
Fig. 8 is shown the variation of response
bandwidth B versus the mass ratio g,. It
can be seen that the optimal mass ratio exists
minimizing response bandwidth for given
damping factors of the system.

The optimal frequency ratio, f? is plotted
in Fig. 9 for the variation of the mass ratios.
Unlike s presented in Fig. 2, /2 increases
beyond a certain value of the mass ratio. Fig.
10 shows the variation of the maximum
responses of the secondary structure versus the
mass ratio for different numbers of the
secondary structures. The secondary responses
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Fig. 9 Variation of the f® versus the mass
ratio. u,, for A=R8". £,=¢,=0.02
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Fig. 10 Variation of the maximum responses of
the secondary structures versus the mass

ratio, u,. for B=B". &,=¢,=0.02,
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decrease with an increase of the mass ratio
and remain constant above a certain value of
the mass ratio.

Figure 11 shows the ratio of the maximum

responses of the secondary structure at % to

those at f3"' versus the mass ratio. The ratio

indicates how much the secondary responses
are reduced from the responses when the
system would result at the condition of
minimizing primary response. It can be seen
from Fig. 11 that the maximum response
ratios decrease as the mass ratios increase.
However as the mass ratio increases further
after a certain value, the maximum response
ratio increase. Figure 12 plots the responses of

105

1004

[X ) S

0.85 |

080}

E[xnllf-.npt fE| [xlzlb.aw

075}

0.70 N N "
0.00 0.05 0.10 0.15 020

Mass ratio y,

Fig. 11 Variation of the ratio of the maximum
secondary responses at f';”” to those

at f7 for B=p8", ¢,=1¢,=0.02
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Fig. 12 Primary response when the system is
tuned to 7% instead of s/ for

B=B". t,=1¢,=0.02
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the primary structure when the system is
tuned to s instead of f7”. Comparing with

the plots shown in Fig. 4, the responses of the
primary structure increase from the optimal
condition. However it should be noted that the
responses of the primary structure shown in
Fig. 12 are still much lower than the responses
without tuning by the secondary structures.
4, Conclusion

The dynamic responses of a system
consisting of a primary structure supporting
multiple secondary structures are investigated.
The system excitation is modeled as a base
excited stationary white noise random process.
The response characteristics of the secondary
structures are investigated to show that how
the secondary structures are participating in
the interaction with the primary structure. It
is shown in this paper that the responses of
the secondary structures are not evenly
distributed at the optimal frequency ratio
minimizing the responses of the primary
structure. The frequency ratios at which the
responses of the secondary structures evenly
distributed resulting in reduction of the
maximum  responses of the secondary
structures are proposed for different mass
ratios and number of secondary structures.
By tuning the system to the frequency ratio
proposed in this paper, the responses of the
secondary structures are reduced by around 30
percent depending on the mass ratio and the
number of secondary structures, while still
reducing the response of the primary structure
50 percent lower than the responses without
secondary structures.
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