ABSTRACT

Shear failure of reinforced concrete (RC) beams is a serious problem due to sudden brittle failure and many experimental results proved that size effect in shear strength of RC beams is an important feature of reinforced concrete members. As the sizes of RC beams become very large, experiments sometimes become very difficult so that empirical design formula or the experimental data on shear strength of RC beams could not be obtained. Then the numerical analyses for size effect on shear strength of RC beams become very important. In this study, finite-element technique of reinforced concrete is employed for shear analysis of RC beams without web reinforcement and the size effects in shear strength are numerically analyzed. The influencing factors to the size effect in the shear strength of RC beams are extensively analyzed and compared with those by major shear strength equations including several standard specifications.

Keywords: size effect, shear strength, reinforced concrete beams, finite-element technique, shear analysis, shear-strength equations
1. 서론

크기효과는 구조물의 크기가 커질수록 구조물이 지원할 수 있는 평균 저항력이 저하된다는 것으로 정의된다. 많은 실험결과들은 스티립으로 보강되지 않은 철근콘크리트 보의 전단저항력이 보의 크기에 상당한 영향을 받음은 증명하였다. 즉, 보의 길이가 커짐에 따라 철근콘크리트 보의 공절전단강도가 감소하는 전단강도의 크기효과가 존재함을 증명하였다. 이러한 철근콘크리트 보의 전단강도의 크기효과에 대한 연구는 전단강도에 대한 크기효과를 발생시키는 이러한 요인들에 대해서 주로 실험적으로 연구되었고 최근 세계 여러 나라 전단강도에 대한 설계 기준들이 전단강도의 크기효과를 본질적으로 기준식에 반영하고 있는 실정이다. ACI 318 설계기준을 그대로 반영한 대한토목학회(KSCE)의 콘크리트표준시범시(2003)에서는 전단강도의 전단강도의 전단강도의 크기효과를 반영하여 구조적 안전성을 평가하기 위하여 크기효과가 고려된 기준식들을 사용하는 것이 있으나 구조물의 규모가 점점 더 초대형화됨에 따라 실험값이 매우 어려워 실험에 근거한 경험이 존재하지 않거나 억거도 어려운 실정이다. 이러한 경우 대규모 철근콘크리트 구조물에 대하여 전단강도에서 실제 존재하는 크기효과를 재현할 수 있는 검증된 해석적 방법은 매우 중요하다고 할 수 있다. 본 연구에서는 철근콘크리트의 유한요소해석기법을 적용하여 스티립 없는 철근콘크리트 보의 크기효과를 해석적으로 재현하였으며 실험결과와 비교하여 해석기법을 검증하였다. 검증된 해석 기법을 사용하여 콘크리트의 압축강도, 콘크리트 사용 및 주인장철근 보강비, 전단강도 등의 변수로 하여 이러한 변수들이 철근콘크리트 보의 전단강도에서의 크기효과에 미치는 영향을 해석적으로 분석하였다. 또한 이러한 변수들의 영향이 여러 전단강도에서 어떻게 반영되었는지를 해석결과와 비교하였다.

2. 철근콘크리트 보의 크기효과

2.1 크기효과의 실험적 증명

Fig. 1은 $a/d = 3$의 폭이 200mm인 RC 보에 대해 유요값이 나타난 것으로서 보의 유요값이 기절수록 전단강도는 작아지는 크기효과가 나타난음을 보여준다. 특히 경량재에 콘크리트의 경우에도 전단강도에서 크기효과가 나타난다는 것으로부터 전단강도의 크기효과는 콘크리트의 공질 성질의 영향을 거의 받지 않음을 알 수 있다.

Fig. 2는 유요값 d가 다른 Fig. 1의 RC 보 시험에 대해 실험결과를 나타낸 것으로서 보의 유요값이 기절수록 전단강도는 작아지는 크기효과가 나타난을 보여준다. 특히 경량재 콘크리트의 경우에는 전단강도에서 크기효과가 나타난다는 것으로부터 전단강도의 크기효과는 콘크리트의 공질 성질의 영향을 거의 받지 않음을 알 수 있다.

![Fig. 1 Details of specimen](image1)

![Fig. 2 Size effect for effective depth and type of concrete](image2)
Fig. 3은 전단 보강이 없을 때 단단한 경비가 1이 며 보의 길이가 16cm에서 93cm까지 변하는 것은 보에서 전단강도에 대한 Walslev의 크기효과 실험모형이다.[7] 보에 사용된 최대 공석 크기는 16mm이고 주철근비는 트랙을 반지 하여 1.1%로 하고 보의 두께는 25cm이 다. Fig. 4에서 보여주는 것처럼 실험결과 같은 보에서 두께한 전단강도의 크기효과가 존재하는 것을 알 수 있다.

![Load](image)

Fig. 3 Size effect experiment of deep beam

L=2d

25cm

Shioya등은 Fig. 5에서 보여주는 것처럼 유효길이가 각각 10cm, 20cm, 60cm, 100cm, 200cm, 300cm인 철근콘크리트 보에 대하여 실험을 수행하였다.[6] 주철근 보강비는 0.4%이고 전 시약에 등분포하중을 가하였 다. No.1과 No.2 시험들은 첨에 의해 파괴되었고 나머지는 전단에 의해 파괴되었다. Fig. 6에서 보여주는 것처럼 실험 결과 유효길이 100cm 이상의 저연한 철근콘크리트 보의 전단 강도에서도 크기효과가 나타난 것을 보여준다.

![Shear strength](image)

Fig. 4 Size effect in deep beam

![Shear strength](image)

Fig. 5 Details of specimen

Fig. 6 Size effect on shear strength

2.2 전단강도식

대표적인 전단강도 모델식으로 유럽 (CEB-FIP)의 전단강도식[2], 일본토목학회 (JSCE)의 전단강도식[3], Kim & Park 전단 강도식[4]과 ACI 전단강도식[4]를 사용하여 대한 민국 콘크리트표준시방서 (KSCE) 전단강도식 [5]이 있다. 식(1)은 CEB-FIP 전단강도식이 고, 식(2)는 일본 JSCE 전단강도식이고 식(3)은 Kim & Park의 전단강도식이다. 식(4a)는 콘크리트표준시방서의 $L_0/d > 5$인 경우에 사용하는 전단강도식이고, 식(4b)는 같은 보에 사용하는 전단강도식이다. 식(1)과 식(3)에서 압축강도 σ_{ck}는 MPa단위이고 a/d는 전단지간비이고 유효길이 d는 mm단위이다. 식(2), (4a), (4b)에서 σ_{ck}는 kN/cm^2 단위이고 a는 cm단위이다.

$$V_r = [0.15 \sqrt{\frac{3d}{a}} \sqrt{100 \rho \sigma_{ck} (1 + \sqrt{\frac{200}{d}})] bd \quad (1)$$

$$V_r = 0.9[(100\rho \sigma_{ck})^{1/2} (d/100)^{1/4}] bd \quad (2)$$
\[V_c = 3.5 \sigma_y^{0.25} \left(0.4 + d/4d \right) \left(\frac{1}{\sqrt{1 + 0.008d}} + 0.18 \right)bd \] (3)

\[V_c = (0.5 \sqrt{\sigma_y + 176} - \frac{V_d}{M_p}) bd \] (4a)

\[V_c = (3.5 - 2.5 \frac{M_p}{V_d}) \times (0.5 \sqrt{\sigma_y + 176} - \frac{V_d}{M_p}) bd \] (4b)

Fig. 7은 Walraven의 실험에 의한\(^{[16]}\)과 전달한 전단강도 모델의 유효값이에 따른 전단강도를 비교한 것이다.

![Fig. 7 Comparison of size effect models](image)

3. 전단교소 해석

해석적으로 철근콘크리트 부재의 전단파괴가동을 재현하고 전단강도의 크기효과를 규명하기 위하여 전단교소와 이에 따른 크기효과에 영향을 주는 인자를 분석하는 것은 매우 중요하다. 전단교소의 해석모델에서 철근의 부착효과가 영향을 미치는 철근주변의 영역(소위 RC영역)을 고려한 경우와 고려하지 않은 경우를 비교해보면 RC영역을 고려하지 않은 경우는 실제의 전단강도보다 현저히 작은 값을 나타냈으며, 전단강도의 크기효과도 해석적으로 재현할 수 없음을 알았다.\(^{[16]}\) 즉 RC영역에서의 인장강화(tension stiffening)현상은 전단해석에 매우 중요한 고려되어야하며 부근콘크리트만의 기통모델링에서

이와 같이 철근주변의 어느 일정 영역에서는 철근의 부착효과로 인해 콘크리트가 인장강화가 동을 보이며 이는 콘크리트의 전체적인 견고함에 영향을 준다. 부착효과에 의한 콘크리트의 인장강화모델은 식(5)과 같이 표현될 수 있으며 Fig. 9과 같이 보강철근의 종류에 따라 다른 경화계수 \(c\)를 도입하여 경화의 정도를 다르게 고려할 수 있다.\(^{[12]}\)
철근의 부착효과가 영향을 미치는 철근 주위의 RC영역의 크기에 따라 Fig. 11에서 보여주는 것과 같이 철근 후의 부재의 강성도와 파괴형태가 달라지며 Fig. 11의 C 상태로부터 해석모델링에 사용되는 RC 영역의 최대면적 A_{max} 와 이 크기에 대응하는 RC영역의 최대높이 h_{max} 를 식(8)로부터 구할 수 있다.

$$ A_{\text{max}} = A_s \frac{\sigma_y}{\sigma_{dk}}, \quad h_{\text{max}} = \frac{\sqrt{\pi}}{2} d_b \frac{\sigma_y}{\sigma_{dk}} $$

여기서, A_s = 철근의 단면적, σ_y = 철근의 항복강도, d_b는 철근의 직경이다.

3.2 무근콘크리트영역 모델

무근콘크리트영역 혹은 PL영역에서는 잔량과 첨단후충중에서 최대하중 이후 변형률-연장 현상이 나타나며 이 때 해석에서 유한요소크기 의존성을 제거하기 위해 연속히의 응력-변형률축선(식(9))의 기울기를 조정하였다.(Fig. 12) 즉 연화가 일어나는 실제 균열록(wc)은 유한요소의 요소크기(lc)로서 고려되며 요소크기에 상관없이 동일한 과제에 너지를 갖고 Fig. 13과 같이 요소크기에 따라 다른 연장응력-변형률 곡선을 사용하였다.

한편 첨단연화에 대해서도 첨단변형률 γ가 최대 첨단응력 τ_{max}에 의한 극한 첨단변형률 γ_{u}에 도달할 때 첨단연화가 시작되며 식(10)으로 표현된다.

$$ \sigma = \sigma_{dk} \left(\frac{\varepsilon_{tu}}{\varepsilon_l} \right)^c $$

Fig. 11 Crack control capability and concrete area

Fig. 10 Shear-stiffening model for concrete
3.3 해석모델의 검증

해석모델의 검증을 위해 Fig. 1과 같이 Walraven이 행한 3가지 크기의 전단강도 실험 제(1)에 대하여 Fig. 15와 같이 모델링하여 전단

가동에 대한 유한요소해석을 수행하였다. 여기서 무근콘크리트영역(PL 영역)의 유한요소크기에 따라 변환곡선의 기울기 c을 결정하였으며 RC영역의 크기는 식(8)로부터 구하였다.

![Fig. 15 FEM model used in analysis](image)

Fig. 16은 여러 유형함에 대해 행한 해석결과를 실험결과와 비교한 것이다. 비교로부터 본 해석모델이 철근콘크리트의 전단가동에의 크기 효과를 재현할 수 있음을 알 수 있다.

![Fig. 16 Comparison of size effect models](image)

다음으로 Fig. 3에서 보여주는 유효길이가 16cm에서 93cm까지의 길은 보들에 대해 철근 콘크리트 보의 전단강도에 대한 크기효과를 해석하고 실험결과(1)와 비교하였다. Fig. 17에서는 유한요소해석에 사용된 모델을 나타낸 것이고 Fig. 18은 보의 길이에 따른 전단강도값을 보여준다. 여기서 유효길이가 20cm 이하의 작은 보의 경우는 해석에서 제한판의 강성의 영향을 고려하지 않았기 때문에 약간 작게 평가되었으나 실험과 해석결과가 대체적으로 잘 일치함을 알 수 있다. Fig. 19는 실험과 해석에서의 균열발생을 비교한 것으로 해석이 실험의 균열점진을 유사하게 재현함을 알 수 있다. 여기서 균열도는 직분점에서의 인장변형율이 콘크리트 인장강도에 대한 인장강도 변형률값의 두 배에 도달한 적분
4. 전단강도 영향인자별 크기효과 분석

위에서 검증된 해석모델링 기법을 사용하여 철근콘크리트 보의 전단강도에 관한 각각의 영향인자에 대해서 크기효과를 분석하기 위하여 모델링을 실시하고 해석하였다. 해석상 전단강도는 하중을 증가시켜 가면서 해석을 수행하여 전단파괴가 발생하는 순간 지점의 수직반력으로 구하였다. 경간의 중앙에서 집중하중(\(a/d = 3\))을 받거나 등분포하중을 받는 보의 경우에 대해 Fig. 20과 같은 보를 압축강도에 따른 크기효과와 주인이철근보강비에 따른 크기효과분석에 사용하였다.

4.1 콘크리트의 압축강도에 따른 크기효과

전단보강이 없는 철근콘크리트 보의 전단강도에서의 크기효과에 대한 압축강도의 효과를 파악하기 위해서 Fig. 20의 RC보에 대해 유효길이가 16, 36, 56, 74, 93cm이고, 폭이 25cm, 보강비가 0.035인 보를 모델링하여 해석하였다. Fig. 21은 압축강도가 330kg/cm², 400kg/cm², 500kg/cm²인 전단지간비가 3인 1점에서 하중이 가해지는 보에서 콘크리트의 압축강도에 따른 크기효과를 나타내고, Fig. 22는 같은 보에서 등분포하중이 작용하는 경우이다. Fig. 21과 Fig. 22에서 보는 것과 같이 콘크리트의 압축강도가 커짐에 따라 각 경우의 철근콘크리트 보의 전단강도는 증가하며, 콘크리트의 압축강도가 커짐수록 유효길이가 40cm 이하에서는 크기효과가 더욱 분명히 나타나며 그보다 유효길이가 큰 경우 압축강도에 의한 크기효과의 정향이 점차 감소함을 알 수 있다.

Fig. 23은 D-1, E-1, F-1 시리즈의 파괴시의 균열형태이다.
Fig. 23의 a), b), c)를 비교해보면 콘크리트의 압축강도가 증가할수록 점점 횡단면폭은 줄어들고 전단균열이 발생함을 알 수 있다. Fig. 24, Fig. 25는 a/d=3인 집중하중과 등분포하중인 경우 콘크리트의 압축강도에 따른 전단강도를 다른 전단강도와 비교해 본 것이 다. Fig. 24에서 Fig. 25가지의 비교로부터 크기효과를 식에 반영하는 JSCE 전단강도식, CEB-FIP 전단강도식 그리고 Kim & Park 전단강도식은 포의 유효길이가 증가함에 따른 전단강도의 감소를 제한하며 해석은 강도식보다 유효길이가 작은 경우 전단강도를 크게 추정하는 Kim & Park 전단강도식이 해석과 가장 유사하게 전단강도를 예측함을 알 수 있다.
4.2 주인장철근 보강비에 따른 크기효과

크기효과에 대한 주인장철근 보강비의 효과를 파악하기 위하여 Fig. 20의 RC보에 대해 유효 깊이가 16, 36, 56, 74, 93cm 이고, 폭이 25cm, 압축강도가 330 kg/cm²인 보를 모델링하여 해석하였다. Fig. 26은 보강비가 0.018, 0.035, 0.07이고 a/d=3인 보에서 주인장철근 보강비에 따른 크기효과를 나타낸다. Fig. 27은 같은 보에서 동분포하중에 적용하는 경우이다. Fig. 26, Fig. 27은 각 유효깊이에서 보강비가 증가함에 따라 전단강도는 선형적으로 증가하고, 유효깊이가 커짐수록 그 차이는 감소한다. Fig. 28은 L-1, J-1, K-1 시리즈의 파괴시의 균열형상이다.
Fig. 28의 a), b), c)를 비교해보면 보강비가 커질수록 상대적으로 옥은------+------+------+------+------+------+------=

이 줄어지고 전단균열의 발생이 많이됨을 알 수 있다. 따라서 보강비가 커질수록 점점 북부의 진단균열에 의해 거동이 지배됨을 알 수 있다.

Fig. 29, Fig. 30에서 주인장점은 보강비에 따른 크기효과를 가진 기준값들은 비교해본 결과 크기효과를 식에 반영하는 JSCE 전단간단치, CEB-FIP 전단간단치 그리고 Kim & Park 전단간단치는 보의 유효값이 증가에 따른 전단간단치의 감소를 적절히 재현하며 Kim & Park 전단간단치에 의한 값이 해석결과와 가장 유사한 것으로 판단된다.

4.3 전단지간비에 따른 크기효과

전단지간비의 효과를 파악하기 위해서 유효값이가 16, 36, 56, 74, 93cm 이고, 폭이 25cm, 압축강도가 330 kg/cm² 이고, 전단지간비가 0.375에서 3까지 변하며 중앙 두지점에서 짧은 것은 보를 모델링하여 해석하였다. Fig. 31은 동일한 보에서 전단지간비가 0.375, 1.125, 1.875, 3인 척근콘크리트 보의 전단간단치에서의 크기효과 전단치를 나타낼 것으로서 주안근간비가 0.026, 콘크리트압축강도가 275kg/cm², 유효값이가 27.4cm 인 Kani의 실험과 비교하였다. (11)

Fig. 31 Shear strength for increase of shear span ratio

Fig. 31에서 전단지간비가 증가함에 따라서 각 유효값이에 따라 전단간단치 크기효과의 영향이 감소됨을 알 수 있고, 유효값이가 커질수록 전단간단치 크기효과에서의 차이는 감소됨을 알 수 있으며, Kani의 실험과도 경향이 유사함
올 수 있다. Fig. 32는 각각 T-1, U-1, V-1 시리즈의 파괴시의 균열형태이다.

![Fig. 32 Crack pattern of beams with different a/d](image)

Fig. 32의 a), b), c)를 비교해보면 각 보가 전단간에서 발생한 전단균열의 파괴 형태도 달라졌으며, 전단간비가 클수록 횡구간 내부에서의 균열 발생이 많은 것을 볼 수 있다.

Fig. 33은 각각의 전단간비에 따른 전단강도와 비교해 본 것이다. 전단간비에 따른 크기효과의 경향을 기존 기준들과 비교해본 결과 크기효과를 석에 반영하는 Kim & Park 전단강도는 전단간비가 0.375로 적으며 유효깊이가 큰 경우 해석보다 전단강도를 크게 평가하나 그외의 전단간비에서 해석값과 가장 유사하고 유효깊이의 증가에 따른 전단강도의 감소를 잘 재현하는 것을 알 수 있다.

5. 결 론

본 논문은 스테립이 없는 철���콘크리트 보의 전단저중의 크기효과를 해석적으로 재현한 것으로서 얻어진 결론은 다음과 같다.

1) 철���콘크리트 전단해석시 철���의 부착이 영향을 미치는 철���콘크리트영역에서인장변경. 전단변경을. 그외의 부근콘크리트영역에서는 인장변화. 전단변화를 고려하여 모멘트함으로써 철���콘크리트 보의 전단저중의 크기효과를 더욱 정확히 해석할 수 있음을 밝혔다.
2) 콘크리트의 압축강도와 주인장철근 보강비와 전
단지 인간의 관계없이 철근콘크리트보에서 전단강도의 크기효과가 나타나며 콘크리트의 압축강도가 커짐수록 유의성이 더해지며, 크기효과의 경향은 더욱 분명히 나타나고 전단단가 비가 증가함에 따라 크기효과의 경향이 감소하였습니다.

3) 기존 기준의 실험 및 해석 결과를 비교해본 결과, Kim & Park의 전단강도석의 해석결과와 상대적으로 잘 일치하는 것으로 나타났으며 철근콘크리트 보의 전단강도에서의 크기효과를 직접적으로 반영하지 않는 우리나라 콘크리트 표준시방서 전단강도식은 철근콘크리트 보가 대형화됨에 따라 안전측이 아닌 경우도 있으므로 크기효과를 반영하여 계정이 필요한 것으로 판단된다.

참고문헌
5. 대한토목학회. 콘크리트표준시방서, 건설교통부 개정. 1996.

요약
철근콘크리트 보의 전단강도는 급격히 취성과 다를 때에 중요한 문제이며, 많은 실험결과들이 보여주듯, 철근콘크리트 보의 전단강도에서의 크기효과는 철근콘크리트 보의 중요한 특성임을 밝혀냈다. 철근콘크리트 보의 크기가 점차 커짐에 따라 실험에 매우 어려워지고, 전단강도에 대한 실험설계나 실험결과를 얻기 위해 동일하게 이에 따른 철근콘크리트 보의 전단강도의 크기효과에 대한 수치해석적 방법이 매우 중요해짐을 알 수 있었다. 본 연구에서는 스터딩이 없는 철근콘크리트 보의 전단해석에 유한소요해석기를 적용하였고, 전단강도에 대한 크기효과를 해석적으로 분석하였다. 또한 철근콘크리트 보의 전단강도에 대한 크기효과에 영향을 주는 인자를 분석하였으며, 영향인자를 명확히 표준시방서에 포함한 주요 전단강도식과 비교하였다.

(접수일자 1998. 6. 9)