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Exponential Stability and Feasibility
of Receding Horizon Control for Constrained Systems
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1. Introduction

Most practical systems have some constraints on
inputs, states, and outputs. For example, actuators,
valves, pumps, and compressors which have been
widely used as input devices have their limits in the
operating region. Drum pressure, temperature, and rpm
(revolutions per minute) which may be expressed as
outputs or states for boiler-turbine control systems
must not exceed their upper bounds for safety. The
receding horizon control has been emerged as a
powerful strategy for such constrained systems with
limitations on inputs, states, and outputs [2,3,5,6,7,
89,10]. Especially, the stability and feasibility issue of
the receding horizon control for constrained systems
has been focused on in recent literatures [3,5,6,9,10]
Originally, the terminal equality constraint for full
states was first introduced in[2] in order to guarantee
stability of the receding horizon control for uncon-
strained systems. Even if this approach can be
directly applied to constrained systems, the terminal
equality constraint may decrease feasibility or need
much computational burden. In [5,6,10], constrained
receding horizon control schemes with the relaxed
terminal equality constraint have been proposed. This
artificial constraints are satisfied by putting the
unstable modes of the states instead of full states to

the origin at the finite terminal time. However, this
relaxed terminal equality constraint is still restrictive
because the equality constraint rather than the
inequality constraint should be satisfied, and hence the
horizon size may have to be made large so as to
make the problem feasible. In order to overcome this

g} 01997, 12. 3, FHYE 1998 7. 6.
oA : AEH71&9, systems and control sector
ASE  AgdEn, AVFEE

drawback, the mixed constraints have been introduced
in [10]. However, only attractivity property rather than
asymptotic or exponential stability has been shown in
these results. It is noted that constrained systems are
nonlinear and hence precise statements for stability
are required. In [9], the infinite horizon LQR for
constrained systems is proposed. While finite horizon
problems have been considered in most of results on
the constrained receding horizon controller, the infinite
horizon problem is also considered in [9]. The idea is
to put the states at a finite time step to a ball in
which there exists the conventional state feedback
LOR satisfying input and state constraints. However,
it requires long horizon size to put the states into the
ball and hence much computational burden. The
motivation of this work is to show the exponential
stability of a new receding horizon controller for
constrained systems and consider how to increase
feasibility while guaranteeing the exponential stability.
It is noted that most conventional results on
constrained receding horizon controllers showed only
their attractivity property.

In order to make optimization problems of the
conventional results feasible, long horizon size is
needed, since the terminal equality constraint and the
terminal LQR constraint are restrictive. It is also
noted that as horizon size increases, the
computational burden also increases. In this paper,
we consider the finite horizon problem with finite
terminal weighting matrices. For the artificial con-
straint to guarantee stability, we introduce the
invariant ellipsoid constraint which is less restrictive
than the conventional terminal equality constraint. The
basic concept of this artificial constraint is to put the
terminal state into the ellipsoid which is invariant for
the constrained system using a linear state feedback
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gain. It is shown that the proposed receding horizon
controller guarantees exponential stability of the closed
loop system for all feasible initial states sets. We also
propose some implementable versions of the proposed
controller, where feasibility is improved by introducing
system partition and constraints softening. In these
cases, feasibility can be improved since only unstable
modes are required to be put into the ellipsoid and
only input constraints are considered by softening
state constraints. It is also shown that the exponential
stability in these cases is guaranteed. An illustrative
example is included to compare some constraints
softening methods.

This paper is organized as follows : In Section 2, a
new receding horizon controller is proposed for the
systems with hard constraints on the input and the
state. In Section 3, some implementable versions of
the proposed controller in Section 2 are proposed. In
Section 4, an illustrative example is followed. And
Section 5 concludes this paper.

II. Constrained receding horizon control
Throughout this paper, we will consider the following
time—invariant discrete linear system with input and
state constraints :

xk+1=Axk+Buk (1)
subject to
u <u<ut, k=0,1,-,0 )
g <Grx=g”’, k=0,1,,00,

whereu ", uteR™ GeR™ " and g ,gteR™ It is
Gxp,=(0 satisfy the

constraint (2), in other words, all elements of %~ are

assumed that «,=0 and

negative and all elements of #* are positive. Note
that the output constraint y <y,<y® can be
expressed as the state constraint in (2), because the
output equation is generally expressed as y,= Cx,.
We denote U as the feasible set for the above input
constraint and X as the feasible set for the above
state constraint. It is noted that since the constraint
(2) is linear and include the origin as an interior point,
U and X are polyhedra and therefore convex.
Denoting that x4y and .y, are predicted
variables at the time % with x,,=x,, we define the
following finite horizon cost function which should be
optimized at every current time % :

—1
Kan B = g(x it Qg it U i Rt g4) (3)
+ % e e T s

where @>0,R>0, ¥>0, N is a finite positive integer.
We assume that the terminal weighting matrix &
satisfies the following inequality condition :

¥>(A+ BH) ¥(A+ BH) + Q+ H RH, 4
where H is a free parameter. First, we introduce a
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receding horizon controller for unconstrained systems
which was proposed in [4] and is defined as the first
solution of the following optimization problem :
e S
Then, the closed-loop stability of this receding horizon
controller is guaranteed by the following theorem.
Theorem 1 [4] : Suppose that the inequality condition
(4) is satisfied. Then the receding horizon control
up=uy, Wwhere w4 i=0,-,N—1 is the optimal
solution of the optimization problem (5), exponentially
stabilizes the system (1).
Before stating main results, we introduce so-called
invariant ellipsoid property which can be interpreted in
terms of quadratic stability [1]. Suppose that there
exists a KeR™" and a positive definite matrix

PeR™" such that

(A+ BK)' P(A+ BK)— PX0. ®
And define an ellipsoid Ep centered at the origin :
Ep= {£é=eR"& PE<1}. (7)

Then, for every initial state xy= Ep, the state
trajectory x,>0(V£>0) with the state feedback control
u,= Kx, remains in the ellipsoid Ep». Based on this
property, we introduce the following lemma for the
stability of the system (1) subject to the constraint (2)
with a state feedback controller.
Lemma 1 : Suppose that P>0 and K satisfying (6)
also satisfy the following LMIs for some Z and V
with X=P ! and Y=KX :

[5. XZO, Z,'js ;/2’ j=l,2,'",m (8)

GXG<V, Vi< g j=1,2,-.n, ©)
where g, and «; are defined by g,=
wu;=min(—u;,u;7). And

are the jth elements of

min(—g;,g}) and
g7.g7,u; and ujf
g7, gt u” and u?, respectively. Then the state
feedback controller u,= Kx, exponentially stabilizes
the system for all xy= Ep while satisfying the
constraint (2). And the resultant state trajectory x;
always remains in the region Ep.

Proof : The proof is a simple extension of the
result in [1] which is based on continuous time
systems. Since P satisfies (6), we can easily show
that K is an exponentially stabilizing feedback gain.
Now, we should show that the resultant state
trajectory remains inside the ellipsoid while satisfying
the constraints (2). First, assume that xyPx,<1. Then

ka'kaH = x;,(A-f-BK)'P(A-i—BK)xk
< xk'ka < 1.

Since x¢Pxy<1 by hypothesis, we obtain
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x1'Px; = xy(A+ BK) P(A+ BK)x,
< xpPxy < 1.
Hence, we conclude that the state remains inside the
ellipsoid by induction. Now we will investigate if
the constraint (2) is satisfied. By hypothesis, wu;
can be represented as w,=Kx,= YX "'x,. Then, it
holds

max golud’ = max pol YX ~x)%

that < max . gl YX "'4?
= (YX'Y) 4

where |u#J; denotes the absolute value of the ith
element of u,. Therefore, the input -constraint
u " <u<u’ is guaranteed by the LMI (8). The state
constraint can be checked with similar procedure. W
Now wusing the property of the invariant
ellipsoid, we propose a new receding horizon
controller which satisfies the constraint on the
input and the state, and guarantees exponential
stability of the closed loop system. In order to
guarantee the closed loop stability, we add an
artificial invariant ellipsoild constraint at the
terminal time step. Consider the following
optimization problem subject to the additional
artificial constraint of invariant ellipsoid :

Minimize
X B 1o

Uhp, "y U g+ N— Lk TGt )

u Swupgs<u’, i=0,1,N—1

subject to {g <Gxpp<g*, i=0,1,- N 11

% e e e =<1

where we assume that the terminal weighting matrix
¥ satisfies the following assumption.

Assumption 1 : The finite terminal weighting matrix
¥ satisfies the following LMIs with X= & '(30) :

X (AX+BY) (QVX) (RMYYy

(AX+ BY) X 0 0 50
12 0 I 0 ’
Ry 0 0 I
z - 2
[ Y}ZO,Z;&‘S w;" j=12,,m
Y X

GXG<V,Vy< g/ j=1,2,+n,

where X,Y,Z and V are variables which should
be found.
It can be easily verified that ¥ satisfying Assump-
tion 1 also satisfies (4) with H=YX ! and hence
A+ BH is stable. Then we define a new receding
horizon controller as the first optimal solution of the
above constrained optimization problem with the
terminal weighting matrix satisfying Assumption 1.
We also define the feasible initial states set of the
optimization problem (10) :

F(QT,N)={xOER” I 3 u;E U, i=0,"'N—l,
such that x;.,€X and xys Eyg}

It is noted that F(¥ N) contains an open
neighborhood of the origin for sufficiently large N,
since X and U include the origin as an interior
point. In order to show the exponential stability of
the proposed receding horizon controller, we need the
following lemma :

Lemma 2 : Suppose that x,€ F(¥,N). Then there
exist ¥>0 and u .= U, i=0,--,N—1 such that
| gy gld?<Hlzf?,  xprp=X, =0, N—land %.4m
e Ey.

Proof : We consider the case that x,+0 since
x,=0 gives the trivial solution #,.;=0. Let B(y)

be a closed ball with a radius >0 such that
B(pCF.If x,=B(y), define a(x,)s[1l,) such that

a(x,)x,=0B(y) where 8B(y) denotes the boundary of
B(y). Otherwise, define a(x,)ell,00) such that
a(x)x,s F—B(y) Then there exists a control
sequence %4 4= U which drives ae(xy)x, into the
ellipsoid Ey in N steps while satisfying the
state constraint. Since the system is linear
G Upsps U drives x, into Ey while satisfying
the state constraint. Denoting z= max {l# ~|w lu *|s),
we obtain| # 4. yl’<m %’. Hence, the following

inequality holds

—2

sy Beeal’ sz m W<,
which completes the proof. [ |
Now, we are ready to state our main results on the
exponential stability.

Theorem 2 : Suppose that Assumption 1 holds. Then
the optimization problem minimizing Jx,#4) subject to
the constraint (11), is always feasible for all £=0 and
for all initial states xo= F(¥,N) . Also, x,=0 is the
exponential stable equilibrium of the closed-loop
system with the receding horizon controller stemming
from this optimization problem, for all initial states
X0 E F ( v, M .

Proof : Suppose that there exists the optimal
solution %4+ at the current time % and let

H=YX"'. Then, at the next time step A+1,
consider the following control sequence :

U bt dk+1
U p+ NE+1

u‘k'ﬂk Z'=1,2,"',N_1,]. (12)
Hx py Me+1

Then the above control sequence gives a feasible
solution for the optimization problem (10) subject to
(11) at the next time step £+1, because
=% s mper1) Temains in  Ey and the control
nput % me1=Hx g+ Satisfies  the invariant
ellipsoid property. Hence, by induction, we observe
that the optimization problem is always feasible for all
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k and every initial state x,= F(¥,N). In order to

show the exponential stability of the closed loop system,
we will show that there exist a, b, ¢>0 such that

d2< T (xp, B) <Hx)?, A <—clx)?, (13)
and hence J'(x.,k) serves as a Lyapunov functional

for the exponential stability. We can easily show that
the following inequalities holds :

T (%0, B2 2" Q2 A i (Qlxd?. (14)
From Lemma 2, there exists a feasible
Uprip, 1=0,"N—1 and x>0 such  that

ltt oy ®<xlxd?. Denoting %4+, as the resultant
state trajectory with this control sequence, we obtain

= ~, ~ ~, ~
I < iz‘b(x b h@ Xprapt w g U gy )

+ % pr e X ot Nk
(15)
< [(N+1) A°(1+ MBIV x)?max {2 p (Q),

A rax ()} + XNA 1o (R) |42,

where A: =max ,~=1'..._N||Ai“. Next, let J be the cost
value when control sequence (12) is implemented at
the next time step k+1. Then the following
inequality is easily derived :
T (xe, B = " Qe+ up' Ruy+ ]
> x, Qo+ wy Rup+ I (xSs i, B+ 1),

which can be represented as

AT (x) < — 2" Qui— ' Rup< — A i (Qlxd > (16)
Hence the inequalities (14), (15), and (16) show that
there exist a,b,¢>0 such that the inequality (13) is
satisfied. [ ]

III. Feasibility and implementation
Generally, input constraints are imposed by physical
limitations of actuators, valves, pumps, and etc., while
state constraints are often desirable. There are often
cases that state constraints cannot be satisfied all the
time and hence some violations of state constraints
are allowable. Especially, even if state constraints are
satisfied in nominal operations, unexpected disturbances
may put the states aside from the feasible region
where state constraints are satisfied. In this case, it
may happen that some violations of state constraints
are unavoidable, while input constraints can be still
satisfied [6,10]. Hence, if some violations of state
constraints are allowed, we can guess larger feasible
initial sets. Moreover, if the terminal ellipsoid
constraints are relaxed, we can guess much larger
feasible initial sets. In this section, we propose some
methods to increase feasibility of the proposed
receding horizon controller by introducing mixed
constraints and system partition. The mixed constraints
(We will represent the hard state constraint

ROf - KISSH - AREIRSt =2X R4 2 M55 19810

g <Gx,<g‘tas Gx,<g, which can be easily derived
by modifying G) are given by

u <wu<ut, k=0,1,---,0
[ G, <gte, k=0,1,-+,00 (a7)

and &,=0 denotes tolerance for violation of state
constraints. In order to enlarge feasibility, we partition

the system matrix A into stable and unstable modes
as follows :

= -1 ]u 0 vu
A=VJVi=[V, Vs][o /” Vs] 18)

where J,’'s eigenvalues are unstable and J;'s
eigenvalues are stable. Then the unstable mode
2“= V, satisfies
2 p1=J, 2%+ V,Buy 19

Now, the idea is to put only unstable mode into the
ellipsoid instead of full states. We assume that there
exist X,>0 and Y, which satisfy the following
couple of LMIs and denote that ¥,=X,' and
H,=Y/0,.

Assuption 2 : There exists ¥,(>0) which satisfies
the following LMIs :

Xy (JuXu+ B.Y) QX)) (RMV:Y)
VX4 BY) X, 0 0 |y, (20)
Q\x, 0 I 0
Ry, 0 0 I

[f §:]20 Zi<ut, j=12,+m (21

where X,=¥;.B,=V7'B, and @Q,=V,QV,.
Since J; is stable, there exists ¥, satisfying the
following inequality :
=] U+ V,/QV,

Now denoting

7= V[Q(J)r 8—] v 22)

H= [H, 01V},
it can be easily verified that ¥ and H denoted
above satisfy the inequality condition (4). Using ¥ in
(22) as the terminal weighting matrix and introducing
a cost function S(e(k)) for violations of state

constraints, we modify the cost function and the
corresponding optimization problem as

Jxp, B = J(xy, B+ Sle(RI]) (23)
Minimize
U gy U et N 11k ECR) Jlxx, B) (24)
subject to
u <upps<u’, i=0,1,--N—1
CX bt kS &+ € pr it i=1,,N
G(A+BHY % s mpS8t € pae ey 1=1,72,00 (25)
€ x>0 >k

% e X e <1
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where U= V', V, e(B={e;+4=0, i=1,-N.},
N, is chosen to satisfy e,45=0 for »N.. It is
well known that such an N, indeed exists because

A+ BH is stable [6]. We can observe the terminal
ellipsoid constraint in this optimization is relaxed from
the optimization problem proposed in the optimization
in the previous section, because we only have to put
the unstable modes instead of full states into the
ellipsoid. We also define the feasible initial states set
of the optimization problem (24) :

Fu(@',N)={xOER"| EIu,E U, i=0,---,N—1,
such that xye E &

It is noted that F,( ¥, N)2 F(¥,N) because there is

only input constraint and the terminal ellipsoid
constraint is much relaxed. Before stating the theorem
on the exponential stability, we made an assumption
on the cost function S(e()).

Assumption 3 : S(e) satisfies the following conditions:
-Define €*(k) such that the jth element of &7(k)
denotes max ;=q ..n& €+t Where e;=[0--1---0]
is the unit vector with nonzero jth element. Then
there exists 6,00 such that S(e(®)<be™ P2,

- S(er(B)<S(ez(B), if le(Bli<llex(R.

Theorem 3 : Suppose that Assumption 2, 3 are
satisfled and the terminal weighting matrix ¥ is

defined by (22). Then the optimization problem
minimizing J.(x;, %) subject to the constraint (25), is
always feasible for all (>0 and for all initial states
e F,( T,N). Also, x,=0 is the exponential
stable equilibrium of the closed loop system with the
receding horizon controller stemming from this
optimization problem, for all initial states

x%e F, (¥, N).

Proof : Let &%+q i=1,,N, be the optimal
solution Then the following sequence gives a feasible
solutions at the next time step A+1

Uptik+l = u*k'+z]k i=1,-,N—-1

UprMp+t = HX pympsrs (96)
Eprinrl =  Erti i=1,,N,
€kt Np+1lk+t1l =

Now we will show the exponential stability using the
optimal cost value Ji(x,,%) as a Lyapunov candidate.

Since S(e&* (k)= S(e(k+1)) with the sequence (26),
we can easily obtain the following inequality :

IS5 e, B 2 % @t 4 yRuy+ T (% gy, D)
which shows that there exists ¢>0 such that
A(xs, < —clxd®. And we can easily show that
there exists @>0 such that Ji(xg, £ =dx)% Now
we will show that there exists 5>0 such that

T (g, B <8x)l% 27N

As in Lemma 2, we can easily show that there exists

a feasible control sequence # .4 for x,= F,( T, N)

such that | %, l?<xlxJ?. The following & also
gives a feasible solution :
Eprae=max {1, A} A1+ MBIV »)lxdl1 - 17,

where A:=max ;- .. yI(A+BH. Since S

satisfies Assumption 3, we can show that there exists
5>0 such that (27) is satisfied. [ ]
Now we consider how to choose S(¢). Note that the
additional cost S(e) is included so as to penalize a
measure of violation of the state constraint. First, we
consider an ©© norm of &(k). In this case, S(¢) is
represented as
) = e (B'Se™(k
S(;> 0.()6() (28)

And then the second and third constraint in (25) can
be represented as
Gx prp=<g+e”(k, i=0,1,,N
G(A+BH) x o jp<g+&”(k), j=1,,00.

In view of the optimization problem (24), the decision
variables are u g, ", % g4 n—1 € (B). Hence the size of
decision variables are mXN+mn, which doesn't
require much additional computation burden. However,
this approach has some drawbacks such as mismatch
between open-loop predictions and closed-loop behavior,
which can lead to poor performance and tuning
difficulties. One of altematives to overcome these
drawbacks is to introduce Z-norm cost for violations. A
2-norm cost for violations can be chosen

S(e) = g)ekwk'sﬂﬁu (29)
S$> 0.

In this approach, there is no such a big mismatch
between open-loop predictions and closed-loop
behavior. Therefore, it is somewhat easy to tune
intuitively. However, in this case, the decision
variables are % g, %kt N— 1k E M T E Bt N, -1k AN

therefore the size of decision variables increases to
mN+n N, which requires much computational
burden. Hence, we conclude that there is a trade-off
between two approaches. Some comparisons between
two approaches will be presented through an example
in the following section.

IV. llustrative example
In this example, we present the effects of
constraints softening which was introduced in the
previous section. Consider the output regulation
problem of the following discrete linear system

2 —1.45 0.35 1
Xp+1 — [1 0 0 xk+ 0 Up
0 1 0 0

Y = [-10 Z]xk,

where we assume that there is no input constraints
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and the output constraint is given by
—1<y<1, =1,2,,

We also assume that Q= CC,R=1 and the initial
state is given by [1.5 1.5 1.5]". We construct two
constrained receding horizon controller with the oo
norm cost and the 2-norm cost for constraint
violations, respectively. First, we construct the
constrained receding horizon controller with the oo
norm cost for violation defined by (28). Figure 1
shows the corresponding output responses according
to several violation weightings ($=1,20,50,100 ). In
this figure, we observe that the peak of violation
reduces as violation weighting increases, while
duration of violations increases. In other words,
increased weighting makes an effect of hardening
the state constraint. Hence, we conclude that there
is a trade-off between peak and duration of
violation. In this figure, we also observe that the
responses are not so good when violations appear.
Figure 2 shows the mismatch between finite horizon
(open-loop) predictions and the receding horizon
(closed-loop) responses. We observe that the result
is not so satisfactory, because the mismatch is so
big. Second, we construct the receding horizon
control with the 2-norm cost for violations defined
by (29). Figure 3 shows the corresponding output
responses according to several violation weightings
(5=1,20,50,100 ). In this figure, we also observe
that the peak of violation reduces as violation
weighting increases as in the case of o norm cost
for violation. However, the responses in this case
are better than those in the first case. Especially,
when the weighting is large (S5=50,100), the
responses are much better than those of Figure 1.
Figure 4 shows the mismatch between finite horizon
(open-loop) predictions and the receding horizon
(closed-loop) responses. In this figure, we observe
that the mismatch is much smaller than that of
Figure 2.

From these figures, we observe that the violation peak
is small in the case of o norm, while duration of
violation is small in the case of 2-norm. We can also
observe that overall performances including mismatch
between finite horizon and receding horizon, are better
when the 2-norm cost for violations is adopted.
However, the case of 2-norm cost needs much
computational burden, because the size of the
optimization problems becomes large.

V. Conclusion
In this paper, a new receding horizon controller for
linear systems with input and state constraints, is
proposed. It is based on the finite horizon optimization
problem with an artificial terminal ellipsoid constraint. It

MOt - Aisst - AEisst =2X H4H HM5S

1998. 10

Responses with infinity cost for violations

0| Hard state conskaint

0.6

0.4r

.21

é 10 15 20 25

Fig. 1. The case of oo -norm cost for violations.
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Fig. 3. The case of 2-norm cost of violations.

is shown that the proposed controller guarantees
exponential stability of the closed loop system for all
feasible initial states. It is noted that most of
conventional results for constrained receding horizon
controller guarantees only attractivity of the closed loop
system. Some implementable versions of the proposed
controller are proposed so as to improve feasibility and
performance by introducing system partition and
constraints softening. It is also shown that even these
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cases

guarantees exponential stability. The future work

will be to extend the proposed results to the output
feedback case and the robust control case. R.

Fig.
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