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Development of Direct Optimization
Algorithms using Radial Basis Functions
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1. Introduction

For open-loop function space optimal control
problems, there are two broad classes of approaches to
solutions. One class is the indirect methods which
require the derivation of the function space necessary
conditions for optimality using calculus of variation
techniques and result in a two-point boundary value
problem (TPBVP)[1], wherein the state and control
differential equations are iteratively solved. The second
class is the direct methods, which approximate the
subset of the unknowns in the continous problem with
an assumed parametric model and thereby obtain a
parameter optimization problem. This approximation
can involve parameterization of the control variables
only or both the states and controls can be
parameterized. In essence, this paper establishes a
useful way to parameterize control functions and also
establishes associated methods to optimize the para-
meters. Many different direct optimization techniques
have been proposed and attempted. Direct shooting
uses a finitedimensional parameter representation of
the control history[2] and explicitly integrates the state
trajec- tory. A unique approach was taken by
Zondervan et 0al[3] where a hybrid (direct/indirect)
formulation using nonlinear programming for solution
was used to solve some transfer problems. A purely
direct approach was described by Johnson[4] and later
by Hargraves et al.[5] who represented both the
control
and state histories using Chebychev orthogonal
polynomials and used integral penalty functions to
enforce the equations of motion. A different direct
approach for solving optimal control problems uses
Dickmanns’ collocation method with Hermite cubics[6]
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direct optimization, parameter optimization, radial basis function(RBF), terminal constraints,

to convert the optimal control problem into a nonlinear
programming problem. As another direct method, we
study the direct optimization using radial basis
functions. Radial basis functions have been used
historically for approximation in a curvefitting and
have recently been used as the basis functions for
neural and related input/output approxXimation and
learning networks. Sanner and Slotine[7] proposed a
direct adaptive tracking control architecture which
employs a network of Gaussian radial basis functions
to adaptively compensate for the plant nonlinearities.
Powell[8], studied radial basis functions and showed
they can fit irregularily positioned data points. Girosi
and Poggio [9][10], have recently shown that radial
basis function approximation schemes satisfy regulari-
zation conditions and have proved existence and
uniqueness of the best approximation for radial basis
function networks.

This paper will focus on establishing that radial
basis functions are well-suited for parameterization of
control variables in a dynamical optimal control
problem with terminal constraints. Apparently this is
the first use of radial basis functions in this setting.
The objective of this study is to develop two nonlinear
programming methods, based on radial basis function
approximation, to optimize #(# for dynamical systems

of the form x= f(¢, x, w), with specified terminal
constraints and performance index. The two nonlinear
programming methods are based upon i) an evenly
spaced radial basis function direct optimization algo-
rithm, and ii) an adaptively spaced radial basis
function direct optimization algorithm. We approximate
the control variables with radial basis functions which
are represented with the prescribed sharpness para-
meters (o;) and center locations (r;) for the set of

exponential radial basis functions. Starting with
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smaller number of radial basis functions, we try to
find the right number of radial basis functions with
respect to a tolerance on extremizing the performance
index. In a new adaptive RBF optimization algorithm,
we check the sensitivity of the terminal constraints
and performance index with respect to parameters and
add a new radial basis function centered between the
most sensitive current radial basis center location and
the more sensitive of the two adjacent centers. The
result is that the new radial basis functions are
recursively "attracted” to regions of high sensitivity.
The nonlinear programming algorithms are motivat-
ed by an analogous approach [11], [12], in the recent
literature. For the application, we consider as a repre-
sentative multivariable control problem, a minimum
energy-loss aeroassisted orbital plane change problem
[13]. Since London[14] demonstrated the possibility of
using aerodynamic forces to produce an orbital plane
change with an expenditure of energy significantly
smaller than that associated with an extraatmospheric
propulsive maneuver, numerous studies of aeroassisted
orbit transfer have been carried out for a wide variety
of Earth-orbital and planetary missions[15].

1. RBF direct optimization algorithms
Consider the optimal control problem:

Find #(? such that the trajectory that ensures from
solving the differential equation
x= f(¢, x, w), x(t)= %, (D

extremizes
17
J= 8ty s+ [ (¢, x, wat @

subject to g terminal conditions

¢ (4, x(t))=0 (3
We first parameterize the control vector # appear—
ing in the equations of motion

x= f(t, x, w) (4
where x(HeR”, u(HeR™ with a radial basis
function approximation, illustrated here for the case
that #=wu is a scalar

__L(fi)z
u= ﬁiw,-e 277G ®)
where (w;, o, ;) are respectively (weight parameter,

standard deviation, center location). In this study we
consider w, as the parameters to be optimized with o,

and r, prescribed. Thus, the system to be solved has
the structure

x= f(t, x, w) 6)
where weR" is the vector of RBF weights to be
f has to be
appropriately re-defined. More generally, w could be

determined by optimization and

an arbitrary vector of parameters, and might include,
for example, the o;'s and z;'s. Referencell6]
considers a system of the form

x= f(t, x, D) (7

where p ={p1. 02,
and we need the matrices of partial derivatives

pat is a set of N parameters

o1, ty) = [—415’;‘( tz ] ®)
and
(¢, t0)=[a—g;—tl] (9)

and it is easy to show[16] that ¢ and ¥ satisfy the
differential equations

L1t )= BN, ) +[ L E AL

1ot 1= BOLOCE, )1, [0k, 1)) =11 (10)

L8y, t]=1 0] (11
where
_[oflt x
[B(t)]—[—ﬁ—’——‘-ﬂax(t) ] (12)

Therefore, the dynamics of the original system (1) and
the appropriate partial derivatives are governed by the
following extended system

x= f(t, X, w) (13)
7-pu+-oL (14)
o w
where
_[ dx
ar—[ 9z (15)

We can solve the extended system (13)-(15) using,
for example, Runge-Kutta methods. When we update
the parameters w by a correction 4w, there are
usually more parameters than the terminal constraints,
we can seek small 4w corrections using the minimum
norm correction algorithm[11]. Thus we have a
conventional nonlinear programming problem wherein
the parameters w defining control variables z are
updated iteratively by local linearization, i.e. we re-
cursively solve simultaneous linear algebraic equations

dy=Adw (16)

with dweR" and dyeR™. Since we have more
parameters than the terminal constraints ie. m<N,
the problem is under-determined and we use the
minimum norm correction algorithm :

Adw=AT(AAD 4y )

SErinkr

where

8x(tf) ]



602
_[_dy
and
&1 (t)
dy= : ] (19)
¢'q( t/)

while global convergence cannot be guaranteed, we
find that convergence is enhanced if we use a step
size limitation filter according to the value of 4w as
follows;

new

w = w+dw (20)

where
[dwl=V4w aw 21

If |4wl<e for acceptably small ¢, then we use the
full correction

dw=AT(AAT) 4y (22)

else if |dw|j=>e for acceptably small e, then we use
the scaled correction
Adw=24y (23)
We observe that the explicit minimum norm inverse
{AT(AAT) ™"} can for poorly conditioned systems
be computed more robustly using the Moore-
Penrose[11] generalized inverse based upon the
singular value decomposition. After the terminal
constraints are met, we have a first feasible solution,
but we generally do not know how near the trajectory
is to the optimal solution. To drive the performance
value toward the optimal, we introduce a homotopy
concept[17]. The homotopy process treats the per-
formance index 2(J,) as an additional equality con-
straint. The object value 2(/J,) is made ''portable’’ by
introducing a one parameter (4) family of (J,) values.
]0=H‘+(1_A) ']current (24)

where J® is chosen as '‘the best value of J one
could hope for’’ and is usually not actually achievable.
We need to find the largest value of A which meets
the terminal constraints for which all constraint
violations are reduced to within the acceptable error
tolerances within a specified number of local
corrections. In this state the 4y should be as follows:

‘/’1(1‘/)
¢q(‘tf)

0 current.

Ay= (25)

In our particular implementation, A is set to a
sequence of values and is incremented after each
converged sequence of iterations. When a small
increase (42 ;) cannot be achieved, while satisfy-
ing all constraints within tolerance, the previcusly
converged solution is adopted as the constrained
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optimum. While it is not possible to rigorously
establish that this heuristic approach guarantees con-
vertgence to the global optimum, we find convertgence
is comparable, or superior to, conventional gradient
projection methods, and is much easier to implement.
1. Evenly spaced RBF direct optimization algorithm
During the optimization process described above, we
seek to refine the approximation as the solution
progresses and use lower converged dimensioned
approximations to establish initial iteratives for each
higher dimensioned approximation. To do this, there
are several options, all involve increasing the number
of RBFs to approximate the optimal control #(#. The
simplist strategy is to fix the shape and space the
centers evenly over the entire time domain. For each
additional radial basis function, we re-space the
number of radial basis functions evenly throughout the
entire time domain and prescribe the center locations
7; and the sharpness parameters ¢; and begin from

the first step of the algorithm. Fig. 1 shows how an

1.0
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Fig. 1. Evenly spaced radial basis functions.

additional radial basis function isintroduced. This is
analogous to “grid refinement” [18] in the finite
element method. In Fig. 1 the upper one is for five
radial basis functions and the
lower one is for six radial basis functions which are
spaced evenly throughout the entire time interval.
2. Adaptively spaced RBF direct optimization algorithm
For the adaptively spaced radial basis function
algorithm, we have developed a useful heuristic to
indicate the most attractive part of the time domain
where the approximation needs to be refined We
check the sensitivity of the terminal constraints and
the performance index with respect to parameters as
follows,

3, b _oh
3w1 3w2 6wN
A= oy ov. o 26)
dw, Jdw, dwy
a] al ... _ad]
Jdw, Jdw, Jown
=[AI’A2!“"AN]
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Fig. 2. Adaptively spaced radial basis functions.
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Fig. 3. Flowchart of the RBFs direct optimization
algorithms.

we form the augmented Jacobian and we let A;
denote the #th column of the A matrix. The A;
vector is the gradient of the constraint and
performance with respect to w;. We adopt a positive
measure of the sensitivity with respect to the i th
parameter as S;=ATA;, and then we introduce a new
radial basis function between the most sensitive
maximum S; current radial basis center location and

the more sensitive of the two adjacent centers. Fig. 2
illustrates this heuristic approach. In the figure, for

example, the sensitivity of the fourth radial basis
function is the greatest and the fifth sensitivity is
greater than the third. Thus, an additional radial basis
function is added in between the fourth and fifth radial
basis function. Further notice that we can reduce the
parameter proportional to the spacing of the more
dense center locations, this will permit sharp localized
behavior to be represented more efficiently. Notice
important regions of ¢ will "attract” new RBF until
the representation of (#) is locally "shared” by many
relatively dense RBFs. We find the sensitivity with
respect to any one of these more dense RBFs
eventually decreases and then other regions will
attract the new adaptively located RBF. With each
newly added radial function we increase A to obtain a
new J,, optimize the weights vector, and follow the

same procedure from thereafter. We stop the algorithm
when the increase of the performance index is
negligible (following the optimization iterations after
introduction of each new RBF). We can represent the
algorithms in the flowchart shown in Fig. 3.

III. Application
As a multi-variable control problem we consider an
aeroassisted plane—change maneuver[13]. A typical

aeroassisted plane-change maneuver is depicted in
Fig. 4.

CIRCULAR
ORBIT

CIRCULAR
Boost RBIT
 ©

AV, AV,

Reorbit

ATMOSPHERIC
INTERFACE

Fig. 4. Aeroassisted plane-change maneuver.

Consider the objective of a transferring from a
circular orbit to another circular orbit in a different
plane. The maneuver requires three impulses, where
each thrust maneuver is idealized as a velocity
impulse, 4V . Initially, the vehicle is in a circular orbit
well outside of the Earth’'s atmosphere. The first
impulse, 4V, is applied at the orbital altitude, tangent

to the flight path and opposite to the velocity vector.
This impulse causes the vehicle to follow an elliptic
orbit and enter the atmosphere. The attitude is to be
controlled to optimally maneuver the vehicle during the
atmospheric portion of the flight to accomplish a
maximum change in orbit inclination. Upon entering
the atmosphere, the vehicle modulates, via attitude
control, the aerodynamic forces to perform the plane
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Table 1. The constants of the earth characteristics.

Constant Value Dimension
Earth radius », 2092642 ft
Gravity acceleration )
Y © 32.174 ft/sect

at sea level g,

0.00007292115| rad/sec

Angular velocity o

change. The atmospheric turn maneuver is terminated
at the point where the vehicle exits the atmosphere.
Because of the loss of energy during the atmospheric
maneuver, a second impulse, 4V,, is required to boost
the vehicle to an apogee altitude which is the same as
the desired circular altitude. Finally, a third impulse,
A4V, is applied at this apogee altitude in the direction
of the apogee velocity to re-circularize the orbit. The
total 4V required to complete the maneuver is the
sum of 4V 's from the impulses. The model used in
this problem consists of the deorbit equations, the
equations of motion during atmospheric flight, and the
boost and reorbit equations which will be presented in
the following sections.

1. Deorbit equations

Initially, the orbit is in circular orbit at the radius
7= r,+100mm) and the velocity V.= (GM/r.) ""* where
GM is the gravitational constant of the Earth and 7,
is a reference earth radius. Deorbit is accoplished by
the impulse 4V, which causes the vehicle to enter the

atmosphere at radius 7, with velocity V; and flight
path inclination y,. For given values of »., V., 4V,
and 7, theequations for conservation of energy and

angular momentum lead to the following expressions
for Vo and 70:

V§=(VC—AV1)2—2GM(—,16——710) @7
7 V.—AV)
Y0 =— COS ! r——mT/O_l (28)

In order to ensure atmospheric entry, 4V; must

exceed the minimum value

Vc—’ 2(VE—GM/ny)

1— (7 n)*

B
av, (29)

min

2. Atmospheric flight equations

The equations of motion[19] are for gliding flight
over a nonrotating spherical Earth. If the vehicle is
moving from west to east, and if a positive bank angle
generates a heading toward the north, these equations
are given by

r= Vsiny (30)

y=—=L_ gsiny (31)

m
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b= Vcosrzsin ¢ (32)

. _Vcosycos ¢
g= (rcos 6) (33)

- Lcospy V_z
= "CmV) ( " V)cosy (34)
= —Lsine __ _V €os 7€os ¢tan ¢ (35)

(mVcosy) 7

Here, 6 is the longitude, ¢ is the latitude, » is the
radial distance from the center of the Earth to the
vehicle center of mass, V is the velocity, y is the
flight path angle, ¢ is the heading angle, m is the
mass, L is the Lift, D is the drag, and g is the
bank angle. The control variables in this application
are the angle of attck () presented in drag (D)
implicitly and the bank angle (x). The coordinate
systems are illustrated in Fig. 5. The earth is assumed
to be a sphere whose radius represents mean sea level
and is denoted by 7, .

The acceleration of gravity is given by
2

g= g(—’;) (36)
where g, is the acceleration of gravity at sea level.
The altitude of the vehicle is

h=r—rv, (37

Fig. 5. Coordinate systems.

In order to obtain atmospheric properties as a function
of altitude, we adopt an approximate atmosphere (the
1962 U.S. Standard Atmosphere), with the additional
assumption that the composition of the atmosphere is
constant[13], [20]. The drag and lift forces are modeled
using the drag coefficient
( Cp) and the lift coefficient ( C,) as follows :
D=(-%)psvch,L=(-§—)pSV2cL (38)

where S(125.84/7) is the aerodynamic reference area.
The drag and lift coefficients can be expressed
in terms of the axial ( C4) and normal ( Cy) force
coefficients as o

Cp=Cacosa+ Cysina, C; = Cycosa— Cysina (39)

where @ is the angle of attack. The osculating orbit
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inclination (0<i<180 ) is given by inverting the
relation
COSi== cOs ¢CoS ¢ (40)

Note that the osculating orbit inclination varies
through the atmospheric segment and must have the
required value at exit, since all exoatmospheric
velocity are assumed to be in-plane maneuvers.
3. Boost and reorbit equations

The vehicle exits the atmosphere at 7=, Vg,
and y;. At this point, the impulse 4V, is applied to
raise the apogee of the ascending elliptical orbit to
r,=*.. Conservation of energy and conservation of

angular momentum lead to the following expressions
for 4V, and V, (Velocity at apogee) :

1
_|2GMU 7 —1r) | F (41)
AV TGl roPees s Vi
1
_ 7| 2GMQ =17 | (42)
Vo= 7e| 1—(7dr) cos®yy o871

At apogee, the final impulse 4V; is used to
increase the velocity to 4V, and is given by
avs=V .-V, (43)
The performance index to be minimized is taken as
the total velocity impulse
J=4V,+4V,+ 4V, (44)
The vehicle used in this study is the MRRV
(Maneuverable Reentry Research Vehicle) whose
characteristics are presented in references[19] and [20].
We adopt these characteristics to facilitate comparison
to his historical solutions. The actual computations are
performed in terms of nondimensional variables. These
are the effect of scaling all the variables and tends to
improve the optimization convergence process. The
radius of the
earth, 7., is used as the reference length ; (7,/gy) 2 is
the reference time; and m, is the reference mass. The

non—dimensional variables are

G =-(73/£—s)1—/z (45)

= (46)

v =—(rs—_‘;s—)u—z 47

P (48)

L= mOL, Fa (49)
IV. Results

We have similar trends of control variables and the
states of the system in evenly and adaptively spaced
RBFs direct optimization algorithms. Thus, we

4100

& % #-*:Evenly Spaced RBFs Algorithm

» 4050

2 { 0-0:Adaptively Spa¢ed RBFs Algorithm

%4000 ........ )
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S }

L 1

%3900 (\

o i

£ 3850 :

$ |

g 3800 Mgt 5 p

(=3

3750

20 5 10 15 20 25
Number of RBFs

Fig. 6. Comparison of performance index for
evenly and adaptively spaced RBFs
algorithms.
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Fig. 7. Control variable(angle of attack).

Bank
angle
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g 106 20 00 20

time (sec)

3
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Fig. 8. Control variable(bank angie).

compare those two algorithms with the performance
indexes in Fig. 6. The results of control variables and
the states of the system are presented in Fig. 7, Fig. 8
and Fig. 9. We notice a clear advantage to adaptively
spaced RBF algorithm for N<9. For N=9, it is an
excellent sub-optimal solution in Fig. 6. And we
observe that "qualitative convergence” of the optimal
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aeroassisted planechange occurs early, and for more
than five RBFs, there is little visible change in control
variables, i.e. angle of attack and bank angle in Fig. 7
and Fig. 8. The states of the system is shown in Fig. 9.
Considering from Fig. 6 to Fig. 8 we recognize that an
optimal number of radial basis functions may be used
to parameterize the control variables of the system
while satisfying the terminal conditions.

Angle of Attack

Bank Angle

. ) Velocity
0 200 400 40 200 400

= llLongitude = |Lattude
g7 ;. | g ™o

0 200 400
FPAnge | ™~

400

.....................

0 200 400 0 200 400
time (sec) time ( sec)

Fig. 9. Control variables and states using adaptive
RBF algorithm.

V. Conclusions

The adaptively spaced RBF(Radial Basis Functions)
direct optimization algorithm shows significantly more
efficient convergence with respect to performance
index than the evenly spaced RBF direct optimization
algorithm, especially for a small number of basis
functions. The adaptively spaced RBFs.

direct optimization algorithm converges more rapidly
to the final performance index with small number of
RBFs than evenly spaced RBFs direct optimization
algorithm. The reason is that our adaptive location of
basis functions places the functions where they are
needed to best model the control variables. Here, we
have the conclusions : the RBF direct optimization
algorithms investigated efficiently parameterize func-
tion space optimal control problems, two variations
(evenly spaced centers and adaptively spaced centers)
are studied, a minimum norm nonlinear programming
algorithm is used to iteratively adjust RBF weights,
these ideas are applied to a multi-control variable
optimal control problem.
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