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Robust H« Control of Discrete Uncertain
Systems with Time Delays in States and Control Inputs
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1. Introduction

The dynamic behaviour of many physical processes
contains inherent time delays and uncertainties and
can be modeled by an uncertain system with time
delay. For the case of parameter uncertain systems,
it has been shown that quadratic stabilization with an
He~ norm bound is equivalent to the existence of
positive definite matrix to a certain ARE(algebraic
Riccati equation){1,2] or LMI (linear matrix inequality)
[3]. Also, some works considered a robust stabilization
of discrete time linear systems with norm-bounded
time~varying uncertainty[4], and a robust Hw control
for linear discrete time systems with norm-bounded
time-varying uncertainty[5].

Recently time delay is main concerns because time
delays often are the causes for instability and poor
performance of control systems. Since some works of
robust Hew controller design methods and software
toolbox have been developed, many robust He state
feedback controller design algorithms of uncertain
time delay systems[6,7] were presented. However,
there are some disadvantages in their works. Firstly,
the results were conservative in pre-selection of
some starting values. Secondly, their works did not
consider delayed state and control input in the
controlled output and parameter uncertainties in all
system matrices. Finally, many related works treated
robust He state feedback controller design algorithms
in continuous time case only. Therefore our objective
is to find solutions at a time without pre-
determination of some variables using LMI technique
in discrete uncertain time delay systems. Recently,
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Song and Kim[8] proposed an H~ control method of
discrete time linear systems with norm-bounded
uncertainties and time delay in state. However, their
result is conservative in solving discrete ARE. Also
they just considered parameter uncertainty in A
matrix and delayed state. Therefore we deal with
uncertain time delay system of parameter uncertain-
ties in all system matrices and time delays in all
states and control inputs.

In this paper, we propose a robust He state
feedback controller design algorithm of generalized
discrete time linear systems with time delays in both
states and control inputs. It is shown that parameter
uncertain delay systems with parameter uncertainties
are equivalent to the auxiliary system without para-
meter uncertainties under preserving the quadratic
stability and Hw norm bound of closed loop system.
The existence condition and the design method of
robust He state feedback controller are given.
Through some changes of variables and Schur
complement, the obtained sufficient condition can be
rewritten as an LMI form in terms of all variables.
Using LMI toolbox[9], the solutions can be easily
obtained at a time.

II. Problem formulation
Consider a discrete uncertain time delay systems
described by the difference delay equation

W+ 1) = [A+JARIA(R) +[ A+ JA LB b—d))
+[B.,+ 4B.(B)]ulk) +[ B+ ABLRDu(k— dy)
+[B,+ 4B (A]uw(k) 1)
2(k) = [C+ACRx(R) + [ Coyt+ AC L B)1x(k~ dy)
+{ Dzt 4D (B)Je(B) + [ Doy + AD L Bl k— dy)
+[Dzw+AD2w(k)]w(k)

where x(2)ER" is the state, #(£)<=R™ is the control
input, w(E)ER' is the exogenous input, which
belongs to £5[0,), and z(k)ER” is the controlled
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output. All matrices have appropriate dimensions and
we assume that all states are measurable for state
feedback. The d;, and d, are the positive integer
time delay terms satisfying
0<di{ o, i=1,2. (2)
The admissible parameter uncertainties are assumed
to be the form
AA(R) AB(k) 4B, (k) 4ALk) ABLk)
AC (k) 4D, (k) 4D, (k) AC.Ak) AD,[k) 3
=[] FOLE: B By Bac Bad

where unknown real time-varying matrix F(k) is
defined as

F(k)e @ : = {F(k): F(k)'F(R)<I, (4)
the elements of F(k) are Lebesgue measurable}.
Definiton 1 : The discrete uncertain time delay

system (1)-(3) is quadratically stabilizable with He
norm bound if there exists a linear memoryless state
feedback control law
u(k) = Kx(k) (6))
such that the resulting closed-loop system is
quadratically stable for all admissible parameter
uncertainties and time delays, and the He norm of
the closed loop system is bounded by given value y.
Now, we introduce a norm of signals that are
sequences. We write f={fi}~, in which each f, &
RY. The spaces 5(— o, ) is defined by

l(—o0,0) = { frlfl}2<=} 6)
in which the norm is defined by
Al = { 33570 )

and the space 5[0,) is
Ll0, o) = {fel(—oo,0): f=0 for k< —1}. ®

Therefore, the H« norm of the closed-loop system
T., in discrete time case is

l1zCANl

PO SRR TOT

” Tzw” o =

Also, we discuss about the Schur complement used
in this paper. One of the basic ideas of LMI
problems is that nonlinear (convex) inequalities are
converted to LMI form using Schur complements.
Fact 1[10] For the symmetric matrix L=

[Elrl Ll?], the following are equivalent as follows:
12 2.

i) L0
i) Ly<0, Lyp— LELy'L1p<0 (10)

iif) Lp<0, Ly—LpLz'LE<0.

Lemma 1 The discrete uncertain time delay
system (1)-(3) can be transformed into the time
delay systemn without parameter uncertainties
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2(k+1) = Ax(k)+Aplk—dy) + Bulk)
+ Byuh—d)+1By iHA[ %)
Z(k) — Cz Cz —
B8 1y [ PF L;ﬂ]x(k )
A A Q1)
+[ Do Juthr+ Dt | y(k—dy)
7Eu 7Edu
D,, 7HT w(k)
+ Zw z2 pat
%Ew 0 [ w(k)

under preserving quadratic stability and He~ norm
bound through some manipulations[3-5]. The system
(1) can be quadratically stable with H« norm bound
y of the closed-loop system if and only if there
exists a ¥>0 such that the system (11) can be
stabilized with its He norm less than ¥ by a state
feedback control (5). In here, w(k) and z(k) are
additional exogenous input and controlled output,
respectively.

II. Robust H~ state feedback control
For simplicity of manipulation, rewrite the system
(11) as follows

w(k+1) = Ax(k)+ Azx(k—dy)+ Buw(k)
2k) = Cx(k)+ Cox(k—dy) + Dulk) (12)
+ Dyu( k) + Dy k— dy)
x(k) = 0, k<0,
where
B=1[B, nH), C= [ C],
é; - Czd D = Dzw 7AHz
B o
13)
E; —_ Dzu ) E; p— Dzd s
Fl A ol
~ooy [ w(k) ~ooy [ 2(k)
we) = [2R) 0 = [%)]-

When we apply the control (5) to the delay system
(12), the closed-loop system from (k) to z(k) is
given by

2(k) = Crax(B)+ Cyx(k—d))

+ Dw(k) + DyKx(k—dy)

where, Axy=A+BK.and Cx=C+D,K.

Lemma 2 : For a given >0 and A>0, the system
(12) is quadratically stable with an He norm bound
y with the controller (5) if there exist positive
definite matrices P, R;, and R, such that
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—-p! Ax A; B;, B 0

Al —P+RHKTRRK 0 0 0o &

T T

Ag 0 R0 0 Ge o 15)
B, 0 0 -R, 0 D,

B’ 0 0 0 -p1 D7

0 Cx ¢, D, D -1

holds for the time delays (2).
Proof : Firstly, we define a Lyapunov functional as

Va(R) = (D TPD+ 3 xDTRD (g
£, 3 ) KTREKA).

And it is noticed that the condition (15) implies

AIPAx—-P+R+K'R,K  ALPA, ALPB,
AIPA, —-R+AfPA, AlpB, |[<0. (17)
BIPAk BIPA;, —R,+BIPB,

Taking the difference of the Lyapunov functional (16)
yields

AV, = V(xk+1))~ Vx(k))
= x(k+1)"Px(k+1)
—x(k)(P— R, — K"R,K)x(k) (18)
—x(k—d)) "Rx(k— d))
—x(k— o) TKTRKx(k— dy).

When assuming zero input, we have

x(k) 17[AkPAx—P+R K"RK
Kx(k—ds) BIPAg
AxPA, APBy x(k)
-R+AIPA, AlPB, w(k—d,) ]<0,
BIPA;  —R,+BIPB,||Kx(k—d;)

which ensures the quadratic stability of the closed-
loop system (14). In the next place, assume the zero
initial condition and introduce

J= 2R THR) = 7 k) )], 20)
Noting
I BLAR TH R - A AR AR +AV) @D

and further substituting (18) into (21) and let &k =
[x(BDT x(k—d)T x(k—dy) "KT w(k)T17, then

J< Z)B(k) TZ8(k), 22)

where Z is defined

T =~

H AIPA,+ Ci C
_ |* —r+ATPA+ T,)°C,
Z= |, VU e (23)

* *
ALPB,+ C: Dy AIPB+ C.'D
AlpB,+ G D, AIPB+ C'D
—R,+BYPB,+ D,”D, BIPB+ D,”D
* —AI1+ B"PB+ D'D

where * means symmetric term and H = AZPAy—

P+ R, +K'R,K+ Cy Cx. Therefore when 20,
k=0, the system (12) is quadratically stable with an
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Hw norm bound y. Using the fact 1, Z<0 in (23) is
transformed into (15). ]

Theorem 1 Consider the discrete time delay
system (12). For given y and A, if there exist
positive definite matrices @, S;, S; and a matrix

M such that
—Q+B,S,BT+ A;8,AF AQ+BM B

* - 0
* * — I
* * * (24)
* * *
* * *
BsS; D,+AS T 000
QC'+M™ D" M7 Q
. D’ . 00 g
~I+CS, C+DsS, Dy 0 0
* _Sz 0
* * _‘Sl

holds for time delays (2), then the closed-loop system
(14) is quadratically stable with an H~ norm bound
7. In here, some variables are defined as follows:

M = Kp!
Q= P! (25)
S; = RiY, i=1,2.

Proof : Using the Fact 1 and some changes of
variables, the proof is completed. the inequality (15)
of lemma 2 is equivalent to

_P.—1 AK Ad Bd B 0 0
+ —P+R, 0 0 0 Cx KT
* * ~-R 0 o &7 o
* * * _Rz 0 a'T 0 < 0(26)
* * * * —72[ ﬁT 0
* * * * * -1 0
* * * * * x —R;!
(=4
~-P'+B,R;'B] Ax As B  BR;'Dy 0
* ~P+R, 0 0 sl KT
* *x —R 0 ¢l 0
: : D P . <0 (27)
* * * *  — I+ DyR;! D;T 0
* * * * * —Rz_l
=Y
—P'+B,R;'BY Ax A, B
* -P 0 0
* * _Rl 0
* rox =7 (28)
* * * *
%* * * *
%* * * *
B.R;' D) 0 0
Ci’ KT I
ol 0 0
D 0 0 {<0
—-I+DR;' D)7 0 0
* -Ry' 0
* * —R!
=4
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- P Y+ B,R;'BI+ AR AT Ay B
* — P (;/2
* * — T
* * * (29)
* * *
* * *
BR;' D+ ARG 0 0
o KT I
DTT .0 0 |
—I+CR'C,+DR;' Dy 0 0
* R0
* x  —R!
==
— P '+ B,R;'BI+ AR AT APt B
* —p! (;2
* * — I
. * M (30)
* * %*
%* * %*
BR;' D, + AR T 0 0
PG PKT p!
DTT .0 0 |<o.
— I+ CR' C,"+ DyR; Dy 0 0
* -R;Y 0
* * —Rl_1

Using some changes of variables, M=KP!, Q=
P! and S;=R;!, i=1,2, (30) is changed to (24).
|

(24) is an LMI form in terms of @, M, S;, and

S, . Therefore the robust He state feedback controller

gain K can be calculated from the M=KP™' after
finding the LMI solutions, @, M, S;, and S, from
the (24) and (25). Using the LMI Toolbox[9], the
solutions can be easily obtained at a time because
(24) is an LMI form in terms of variables.

Example : Consider a discrete uncertain time delay
system

0.1
x(k+1) + O_I]F(k)[l 1]}x(k)

|
02 gﬂ +[8ﬂ FRI0.1 0.1]}x(k—d1)
|+ s

+[8:ﬂ F(k)O.l}u(k— dy)
+[8-ﬂF(k)0.1}w(k) (31)

z2(k) = {[1 11+0.1F(RI1 11}x(k)
0.1]+0.1F(R[0.1 0.11}x(k—d})
+ {1 +0.1F(k) }ul(k)
+{0.14+0.1F(k)0.1}u b— d>)
+{0.14+0.1F(R)0.1}ul k).

If we take y=1 and A=1, the system (31) is
changed to equivalent system as follows:

i
—_——
—_—
oS

o

k1) = [(2) ﬂx(k)+[0(')2 g:ﬂx(k—dl)

[y g -+ [ G A0 @)

k) = [} ﬂx(k)+[g:} g:ﬂx(k—dl)

Nt P L
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Using LMI toolbox, all solutions are obtained at the
same time as follows:

p— [0.9383 0.2553

0.2553 0.2173)"
R = [0.1585 0.0949
! 0.0949 0.0895)" (33)
R, = 0.0918,
M = [—0.0535 —4.5303].

Therefore the final robust He state feedback gain is
obtained as

K=[—-1.2069 —0.9982]. (34)
The simulation results are shown in Fig. 1. The
trajectories of state converge to zero as time goes to
infinity in (a) and (b) of Fig. 1. From this result, the
obtained controller stabilizes the discrete parameter
uncertain system with time delays against time
delays and disturbance exogenous input. Also the Hew
norm bound of the closed-loop system can be
calculated by induced norm property between w(k)
and z(%). Therefore we investigate that the value of
y is less than given value from the definition (9).
Actually, the value of 7 is 0.0905(<1) from the (c)
and (d) of Fig. 1. Here, the initial value of states is
zero, time delays are d,=5, d;=10, F(k)=sink,
and the value of w(k) is defined by
w(k)z{lo, if10< k<30 (35)

0, otherwise.

k

(a) xl(k)

x2(0)
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Fig. 1. The trajectories of states, exogenous input,
controlled output, and control input.

IV. Conclusion
In this paper, we presented a design method of
robust He state feedback controller of discrete para-
meter uncertain time delay systems. The uncertain
time delay system problems were solved on the basis

of LMI technique. Therefore the robust He state
feedback controller was obtained at a time without
pre-selection of some variables. The obtained cont-
roller guarantees the quadratic stability and He~ norm
bound of the closed-loop system. An example showed
the effectiveness of the proposed algorithm.
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